

s without the written

ernational editions,
. Visit our Web site at

DN, MSN, Outlook,
s, Windows Live,

ks of Microsoft
the trademarks of their

epicted herein are
lace, or event is

express, statutory, or
ny damages caused or

O Rama

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2008 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any mean
permission of the publisher.

Library of Congress Control Number: 2008920560

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 3 2 1 0 9 8

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information about int
contact your local Microsoft Corporation office or contact Microsoft Press International directly at fax (425) 936-7329
www.microsoft.com/mspress. Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, DirectX, Excel, Expression, Expression Blend, IntelliSense, Internet Explorer, Jscript, MS
Silverlight, SQL Server, Visual Basic, Visual C#, Visual C++, Visual Studio, Visual Web Developer, Win32, Window
Windows Mobile, Windows Server, Windows Vista, Xbox and Xbox 360 are either registered trademarks or trademar
Corporation in the United States and/or other countries. Other product and company names mentioned herein may be
respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events d
fictitious. No association with any real company, organization, product, domain name, e-mail address, logo, person, p
intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will be held liable for a
alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Ben Ryan
Developmental Editor: Sandra Haynes
Project Manager: John Pierce

Editorial Production: Happenstance Type
Technical Reviewer: Richard Triance

Body Part No. X14-55519

 iiiContents iii

Chapter 1
Introducing Microsoft Visual Basic 2008
Express Edition 1
What Is .NET? 2
What Is Visual Basic 2008? 4
Is Visual Basic 2008 an Object-Oriented

Programming Language? 4
What Is Visual Basic 2008 Express Edition? 9

What Kinds of Applications Can You Build with
Visual Basic 2008 Express Edition? 10

What Are the Key Features You Need to Know
About? 11

Chapter 2
Installing Visual Basic 2008 Express Edition 15
Preparing to Install Visual Basic 2008 Express Edition 16

Side-by-Side Installation 16
Prerelease Versions of Visual Basic 2008 Express Edition 17

Installing Visual Basic 2008 Express Edition 17

Chapter 3
Creating Your First Applications 25
Three Types of Applications: What Are the Differences? 26
Getting Started with the IDE 28
Building the Projects 31

Building a Console Application 31
Getting to Know Solution Explorer 32

Getting Help: Microsoft Visual Studio 2008
Express Edition Documentation 34

Coding Your Console Application 37
Customizing the IDE 39
Creating a Windows Application 41

Chapter 4
Creating Your Own Web Browser in Less
Than Five Minutes 47
What Is a Project? 48
What Is the Design Layout? 49

To Create a Simple Web Browser 50
Putting It All Together 56

Chapter 5
Using Rapid Application Development Tools
with Visual Basic 2008 59
Snapping and Aligning Controls Using Snap Lines 60
Using IntelliSense—Your New Best Friend! 62

Using IntelliSense as You Go 62
Using IntelliSense Filtering: Removing the “Uncommon” 63
Opening IntelliSense: Pressing Ctrl+Spacebar 64
Opening IntelliSense: Typing a Period or Left Parenthesis 64
Using IntelliSense Code Snippets: The Time-Saver 66
Invoking IntelliSense Code Snippets 67

Exploring Real-Time Error Detection and Correction 68
Oh, My...My Is Great 70

Contents

iv Microsoft Visual Basic 2008 Express Edition: Build a Program Now!

Renaming 72
Why Should You Rename? 73
How to Use the Rename Feature 73

Exploring Common Windows Controls 75
What Happens When an Event Is Triggered? 78

Chapter 6
Modifying Your Web Browser 85
Opening Your Application 86
Interacting Through Dialog Boxes 93

Adding an About Dialog Box 93
Adding a Navigate Dialog Box 96

Having a Professional Look and Feel
at Your Fingertips 99
Adding a Tool Strip Container and Some Tools 99
Adding a Status Bar to Your Browser 101
Personalizing Your Application with Windows Icons 104

Redoing the Browser 112
Windows Presentation Foundation 112
WPF and XAML 113

Chapter 7
Fixing the Broken Blocks 125
Debugging an Application 126

Using a DLL in an Application 126
Using Breakpoints, Locals, Edit and Continue, and

Visualizers 128

Chapter 8
Managing the Data 141
What Is a Database? 142

What’s in a Database? 142
What Are Data Normalization and Data Integrity? 143
What Is Null? 145
What Are Primary Keys and Foreign Keys? 146
How Do You Interact with a Relational Database? 148

Using SQL Server 2005 Express Edition in
Visual Basic 2008 Express Edition 150
Creating a Database Using Visual Basic 2008

Express Edition 151
Creating Tables in Your Database 153
Creating Relationships Between the Tables 155
Entering Data in SQL Server Tables Using

Visual Studio 159
What Are ADO.NET, Data Binding, and LINQ? 163

Developing the CarTracker Application 165
Using the Component Tray 172
How Do I Get More Meaningful Information

on My Form? 173
Using LINQ 182

Chapter 9
Building Your Own Weather Tracker Application 187
Exploring the Features of the Weather Tracker

Application 188
Creating the Application User Interface 189

Adding Notification Area Capabilities 191
Adding the Splash Screen and About Dialog Box 199
Adding the Options Dialog Box 202

Using the MSN Weather Web Service 204
Connecting to MSN Weather Web Services 206
Setting User and Application Preferences 210
Working in the Background 211
Completing the Core Weather Tracker Functionality 219
Testing Weather Tracker 225
Working with the Options Dialog Box 226
Testing Weather Tracker Options 229

And Now, Just ClickOnce 229

Glossary 235
Index 237

v

aphics for my math class,”

ou can imagine!

o have ideas but don’t know

nd it’s a good introduction

oping software.

ized

chapters, each covering a

y about Visual Basic 2008

 build on previous chapters,

 the material sequentially.

es in This Book

tion using conventions

tion readable and easy to

ok, read the following list,

u’ll see throughout the book

s in the book that you might

tasks. Each task is presented

ps (step 1, 2, and so on).

y a procedural heading that

ll accomplish in the exercise.

v

Introduction
Microsoft Visual Basic 2008 Express Edition (and the

other Visual Studio 2008 Express Edition products) is, in my

opinion, one of the best and most intelligent ideas to come

from the Developer Division at Microsoft. I’m applauding

and cheering for the people who had this brilliant idea

because I believe there is a real need and demand for a

world-class, powerful product for hobbyist programmers,

students, and professional developers. And Visual Basic

2008 Express Edition provides all of that and more.

Visual Basic 2008 Express Edition is a fully functional

subset of Visual Studio 2008, suitable for creating and

maintaining Windows applications and libraries. It’s not

a timed-bomb edition, a demo, or a feature-limited

version—no, it’s a key Microsoft initiative to reach more

people and give them the ability to have fun while creating

cool software.

Who Is This Book For?

This book is for everybody: students, hobbyist pro-

grammers, and people who always thought programming

was a tough task. It’s for people who have ideas like “I wish

I could build a tool to store all my recipes and then print

them and send them to my friends,” “I wish I could build

this cool card game that I have never found elsewhere,” “I

wish I could build this cool software to store my DVD and

CD collection,” “I wish I could build this software to help me

work with matrices and plot gr

and many more projects that y

This book is for people wh

how to bring them to reality. A

to the art and science of devel

How This Book Is Organ

This book consists of nine

particular feature or technolog

Express Edition. Most chapters

so you should plan on reading

Conventions and Featur

This book presents informa

designed to make the informa

follow. Before you start the bo

which explains conventions yo

and points out helpful feature

want to use:

Each exercise is a series of ■

as a series of numbered ste

Each exercise is preceded b

lets you know what you wi

Introduction

on: Build a Program Now!

m)

5 GB of available space

s (for support for

mmended requirements

/products/windowsvista/

px)

 pointing device

ccess to your computer

ss Edition.

ples for the examples

anion content page at

icrosoft.com/mspress/

 use the code samples

 the exercises in the

ou won’t waste time cre-

e exercise. The files and

u learn by doing, which

emember new skills.

ns if you want to verify

t them.

008 Express Edition soft-

ook. The DVD also includes

for Visual C#, Visual C++,

e Express Edition products

 Visual Basic 2008 Express
vi Microsoft Visual Basic 2008 Express Editi

Boxes labeled ■ TIP, NOTE, MORE INFO, and so on, pro-

vide additional information or alternative methods for

completing a step successfully.

Boxes labeled ■ CAUTION alert you to information you

need to verify before continuing.

Text that you type appears in bold. ■

Menu commands, dialog box titles, and other user ■

interface elements appear with each word capitalized,

such as in “click Save As.”

A plus sign (+) between two key names means that you ■

must press those keys at the same time. For example,

“Press Alt+Tab” means that you hold down the Alt key

while you press the Tab key.

Code listings appear in a monospaced font in this book. ■

Sidebars throughout the book provide more in-depth ■

information about the content. The sidebars might con-

tain background information, design tips, or features

related to the information being discussed.

Each chapter ends with an “In Summary…” section that ■

briefly reviews what you learned in the current chapter

and previews what the next chapter will present.

System Requirements
You’ll need the following hardware and software to

complete the exercises in this book:

Windows Vista, Microsoft Windows XP with Service ■

Pack 2, or Microsoft Windows Server 2003 with

Service Pack 2

Visual Basic 2008 Express Edition ■

1 GHz 32-bit (x86) processor ■

1 GB MB RAM (512 MB minimu ■

40 GB hard drive with at least 1 ■

Support for Super VGA graphic ■

DirectX 9 graphics, see the reco

at www.microsoft.com/windows

editions/systemrequirements.ms

CD-ROM or DVD-ROM drive ■

Microsoft mouse or compatible ■

You’ll also need administrator a

to configure SQL Server 2005 Expre

Code Samples

You can download the code sam

in this book from the book’s comp

the following address: http://www.m

companion/9780735625419/. You’ll

and starter solutions as you perform

book. By using the code samples, y

ating files that aren’t relevant to th

step-by-step instructions also let yo

is an effective way to acquire and r

You’ll also find the complete solutio

your work or simply want to look a

N O T E
 The companion DVD contains the Visual Basic 2

ware needed to complete the exercises in this b

the other Visual Studio 2008 Express Editions—

and Web development. You can install any of th

included on the DVD. See Chapter 2, “Installing

Edition,” for detailed installation instructions.

viivii

ins when and how to use

. When it’s time to use a

 instructions for how to

ilt around scenarios that

ts so you can easily apply

rk.

ow all the details, a list

rs in the following table.

available for the practice

roject are included in the

eled “Complete.”

en displays the sum in a

lays the result in a

 on the Internet.

 in Visual Basic 2008

ed with additional

d a navigation win-

 Windows Presentation
 Introduction

Installing the Code Samples

Follow these steps to install the code samples on your

computer.

1. Download the code samples from http://www.microsoft.

com/mspress/companion/9780735625419/.

2. After you download the code samples file, run the

installer.

3. Follow the instructions that appear.

The code samples are installed in the Documents\

Microsoft Press\VB 2008 Express folder on your

computer.

Using the Code Samples

Each chapter in this book expla

any code samples for that chapter

code sample, the book will list the

open the files. The chapters are bu

simulate real programming projec

the skills you learn to your own wo

For those of you who like to kn

of the code sample projects appea

Almost all projects have solutions

exercises. The solutions for each p

folder for each chapter and are lab

Project Description

Chapters 1 and 2 No sample projects.

Chapter 3

MyFirstConsoleApplication

MyFirstWindowsApplication

Application that takes two numbers, adds them together, and th

console window.

Same application as MyFirstConsoleApplication, but this one disp

 message box.

Chapter 4

MyOwnBrowser

Simple Web browser application that enables the user to browse

Chapter 5

TestProject

Application that teaches you to use the most important features

Express Edition.

Chapter 6

MyOwnBrowser

This is the same application you developed in Chapter 4, enhanc

features. You’ll add menus, toolbars, status and progress bars, an

dow with autocomplete. You’ll also build a simple browser using

Foundation (WPF).

n: Build a Program Now!

grams list, select Micro-

ition: Build a Program

reen to remove the

ed against the Novem-

l Studio 2008. This book

ith the final release of

hanges or corrections

d added to a Microsoft

pport for This Book”

more information.

ook are updated, links

ded to the Microsoft

n application by using

t using a SQL Server

oduced to Language

erface to display

r service. You’ll also

ion.
viii Microsoft Visual Basic 2008 Express Editio

Uninstalling the Code Samples

Follow these steps to remove the code samples from

your computer.

ON WINDOWS VISTA

1. In Control Panel, click Programs.

2. Under Programs and Features, click Uninstall a Program.

3. In the list of programs, select Microsoft Visual Basic

2008 Express Edition: Build a Program Now!, and then

click Uninstall.

4. Follow the instructions on the screen to remove the

code samples.

ON WINDOWS XP

1. In Control Panel, open Add or Remove Programs.

2. From the Currently Installed Pro

soft Visual Basic 2008 Express Ed

Now!, and click Remove.

3. Follow the instructions on the sc

code samples.

Prerelease Software

This book was reviewed and test

ber 2007 release candidate for Visua

is expected to be fully compatible w

Visual Studio 2008. If there are any c

for this book, they’ll be collected an

Knowledge Base article. See the “Su

section later in this introduction for

Technology Updates

As technologies related to this b

to additional information will be ad

Project Description

Chapter 7

Debugger

An application full of problems to help you learn how to debug a

features of Visual Basic 2008 Express Edition.

Chapter 8

CarTracker

An application enabling the user to track car ads from the Interne

2005 Express database to store the information. You’ll also be intr

Integrated Query (LINQ).

Chapter 9

Weather Tracker

An application that runs in the system tray and has a nice user int

weather data collected by your application from the MSN Weathe

create a deployment package for the distribution of your applicat

ixix

ent manager at Microsoft

oup. He has a passion for

 WCF, and ASP.NET. For

orking, teaching, evange-

chnologies to everyone.

een working in software

eloper, project lead,

re engineer in QA orga-

 spanning multiple tech-

b development, developer

tion, aviation, and coffee

nt three years teaching

evelopment at a college in

ols for developers and

e world, he enjoys spend-

ds, playing games on Xbox

ading about cars, playing

d NFL football, and having

 fine drinks with friends

ily in Sammamish, Wash-

family. My wife, Hélène,

e and her respect, I am a

ful—my idol, my inspira-

, my love, and an awe-

s for being who you are
 Introduction

Press Technology Updates Web page (http://www.micro-

soft.com/mspress/updates/). Visit this page periodically for

updates on Visual Studio 2008 and other technologies.

Support for This Book

Every effort has been made to ensure the accuracy

of this book and the companion content. As corrections

or changes are collected, they’ll be added to a Microsoft

Knowledge Base article. To view the list of known correc-

tions for this book, visit http://support.microsoft.com/, and

in the Search box, enter the book title.

Microsoft Press provides support for books and com-

panion content at http://www.microsoft.com/learning/

support/books/.

Questions and Comments

If you have comments, questions, or ideas regarding

the book or the companion content or have questions that

are not answered by visiting the sites listed earlier, please

send them to Microsoft Press via e-mail to mspinput@

microsoft.com.

Or you can send them via postal mail to the following

address:

Microsoft Press

Attn: Visual Basic 2008 Express Edition: Build a Program

Now! Editor

One Microsoft Way

Redmond, WA 98052-6399

Please note that Microsoft offers no software product

support through these addresses.

About the Author

Patrice Pelland is a developm

working in the Online Services Gr

Web 2.0 technologies, Silverlight,

the past four years, he has been w

lizing, and talking about these te

For the past 14 years, he has b

development in various roles: dev

manager and mentor, and softwa

nizations. He has vast experience

nologies and fields, including We

tools, fiber optics telecommunica

and dairy companies. He also spe

computer science and software d

Canada.

When not developing great to

helping customers throughout th

ing time with his family and frien

360 and his PC, reading books, re

hockey, watching NHL hockey an

great dinners with good food and

and family. He resides with his fam

ington.

Dedication

This book is dedicated to my

is my strength; because of her lov

better human being. She’s beauti

tion, my sunshine, my best friend

some mother! Mon amour, thank

ion: Build a Program Now!

t Microsoft Learning and

cially like to thank Ben

o work with him again;

n, help, and suggestions

ll the hurdles of writing a

lishing team for all their

ducing a real, tangible

t for working day in, day

g.

e people in the Visual

 and setup teams who

estions in a dynamic and

ycle. I would like to thank

Joe Binder, Brian Keller,

e, Kavitha Radhakrishnan,

amez Rajan, Steve Lasker,

ian.

t MSN for always giv-

ent and to my friends

atrice for reviewing the

re in the Puget Sound

gement and to my fam-

rstanding why I’m not

om and Dad!

ave forgotten!

Patrice Pelland

November 2007

Sammamish, WA
x Microsoft Visual Basic 2008 Express Edit

and for being there for me. I love you! Thanks to her for

letting me repeat this crazy adventure of writing a book.

Thanks

First of all, thanks to my parents. Mom and Dad,

you gave me all the chances to be what I am in life and you

gave me the values to be the man I am. Thanks, and I

love you!

A book is a huge adventure in somebody’s life (imag-

ine two ☺), and it would not be possible without the help

of many people. I’ve always read the “thank you” sections

in other people’s books, and I was always amazed at how

many people are needed to make a book what it is. Now I

really understand why!

Although writing a book is tough—real tough—it’s

really satisfying at the same time. During the writing pro-

cess, you sometimes have doubts, and I had my share of

them, especially those nights at 3 a.m. when all other souls

in the house were asleep, even my dog; when I was in front

of my laptop with an exception and a white page in Micro-

soft Word. I can’t remember how many times I said to my

friends, “No, I won’t be able to be there. I need to work on

my book.” But it’s an awesome experience to write a book;

everybody who has the chance should take the challenge!

That said, I first need to thank my lovely family for

letting me do this to them again. My kids (Laura, 13,

and Antoine, 11) and my wife, Hélène, were so great and

patient. This time they said, “You’re writing another book!

Oh, no…we’ll see you after Thanksgiving.” But at the same

time, they were respecting the space I needed and the time

alone! You guys are great, and I love you!

I have to thank all the people a

the publishing team. I would espe

Ryan for offering me the chance t

Sandra for her constant motivatio

and also for helping me through a

book; and all the folks on the pub

help getting the job done and pro

product. You guys have my respec

out in the crazy world of publishin

I would also like to thank all th

Basic, C#, Windows Forms, MSDN,

helped me by answering all my qu

constantly changing product life c

more specifically Dan Fernandez,

Brian Johnson, Hong Gao, Jay Rox

Kent Sharkey, Lisa Feigenbaum, Sh

Aaron Stebner, and Habib Heydar

Thanks also to my colleagues a

ing me good words of encouragem

Pascal, Simon, Nicolas, John, and P

samples and some chapters.

Thanks to my good friends he

area for the kind words of encoura

ily and friends in Canada for unde

calling or giving any news. Sorry, M

Thanks to everybody I might h

1

ing and find yourself with this

 right place. This book is all about

s of creating software for Micro-

indows you probably use every

w to build applications that are

 on a regular basis, such as your

r e-mail software, and your per-

wondering how you could pos-

nce. Don’t worry. By the time you

ave a blast, and because you’ll

low along with each exercise,

e.
1
What Is .NET?, 2

What Is Visual Basic
2008?, 4

Is Visual Basic 2008
an Object-Oriented
Programming
Language?, 4

What Is Visual Basic 2008
Express Edition?, 9

Chapter 1
Introducing Microsoft
Visual Basic 2008
Express Edition

 Maybe you’ve decided to try programm

book. If that’s the case, you’ve come to the

introducing you to the art, science, and joy

soft Windows—yes, the same Microsoft W

day. Throughout the book, I’ll show you ho

similar to many of the applications you use

Internet browser, your word processor, you

sonal finance application. You’re probably

sibly do this with no programming experie

finish this book, you’ll be a believer. We’ll h

actually be building applications as you fol

you’ll see for yourself just how easy it can b

ion: Build a Program Now!

ve seen the term some-

ay newspaper. A good

are developer what tools

ftware applications

e compiler and tools

ives you everything you

s.

s managed by the .NET

providing a controlled

oading your applications,

tegrity while the applica-

ause they were not

t of the operating

anage their own services,

rruption. Because of

uch as compilers, debug-

mmon Language Runtime

 block” libraries. These

of each .NET component

tion layer in the walls of

 market, as well as what
2 Microsoft Visual Basic 2008 Express Edit

 What is this .NET thing everybody is talking about? Maybe you’

where online or have come across it in the jobs section of your Sund

analogy is that .NET—also called the .NET Framework—is to a softw

and manuals are to an auto mechanic.

 Here is a formal definition of the .NET Framework:

 The .NET Framework is a platform with which you can develop so

and libraries called managed applications; it provides you with th

you need to build, debug, and execute managed applications.

 For our purposes, you could say that .NET is the platform that g

need to develop and run managed applications that run on Window

 We say that applications are managed because their execution i

Framework. In fact, the .NET Framework manages the execution by

runtime environment that offers a wide variety of services, such as l

managing memory, and monitoring and maintaining security and in

tion runs. Before .NET (and Java), applications were unmanaged bec

executed by a controlled runtime environment. No other componen

system provides the services .NET offers. The applications had to m

which sometimes led to erroneous code, security holes, and data co

these problems, applications were tough to maintain and debug.

 The .NET Framework provides you with a wide variety of tools, s

gers, programming languages, an execution engine (named the Co

[CLR]), developer tools, and a large number of predefined “building

libraries are named Framework Class Libraries (FCLs). You can think

as a building block in a house and each version of .NET as an insula

a house. Figure 1-1 illustrates how many versions of .NET are on the

components have been added and in which version they belong.

What Is .NET?

N O T E
Throughout this book, I’ll use

the terms framework and .NET

Framework synonymously.

3

N O T E
What do the other abbreviations

and names in Figure 1-1 mean?

WF is the Windows Workflow

Foundation, another building

block that developers can use to

help automate business processes

through programs. CardSpace is

a technology related to manag-

ing online identities—something

like using a credit card. AJAX

(Asynchronous JavaScript

And XML) is used to develop

Web applications, and REST

(Representational State Transfer)

is a programming architecture

used for transferring data on

the Web.
Chapter 1: Introducing Microsoft Visual Basic 2008 Express Edition

NET 2.0

NET 3.0

NET 3.5

WCF

WF

WPF
CardSpace

LINQ
AJAX

REST

CLR
WinForms

Web Services
ASP.NET

Visual Studio 2008

Figure 1-1
Additive versions of the .NET Framework

Some of these building blocks ship with the Windows Vista operating system. Two

popular ones are Windows Presentation Foundation (WPF) and Windows Communication

Foundation (WCF). WPF is a library that helps you build richer user interfaces and Windows

Vista–like applications for Windows. WCF, as its name implies, is a library that helps two

applications talk to each other using messages. To understand the relationship between

.NET 3.0 and .NET 3.5, remember that .NET 3.0 comes with Windows Vista and .NET 3.5

comes with Visual Studio 2008. Language Integrated Query (LINQ), which simplifies writing

code that manipulates data from various data sources (SQL Server databases, XML files, and

so on), is one of the features in .NET 3.5 that we’ll cover in this book.

ition: Build a Program Now!

g block. We’re going to

ll introduce the blocks

ou need to do so.

les. Microsoft Visual Studio

ramework at all levels. With

age of all the components

e center of the circles. The

 loads and manages the

rget the .NET Framework.

nd a series of valid words

oice for beginners because

r programming languages.

ic 4.0, 5.0, or 6.0), you’ll

sual Basic 2008.

ing language. Let’s talk

I M P O R TA N T
4 Microsoft Visual Basic 2008 Express Ed

 I won’t put you to sleep with all the definitions for each buildin

use or talk about most of them in our projects in this book, and I’

when appropriate. Just consider Figure 1-1 and return to it when y

 Two notes about this figure are worth mentioning.

 First, look at the blue component on top of the concentric circ

2008 is not part of the .NET Framework, but it touches the .NET F

Visual Studio 2008, you can develop applications that take advant

of the .NET Framework.

 Second, notice that the CLR, among other components, is at th

CLR is a crucial part of the foundation because it’s the engine that

execution of source code.

 Visual Basic 2008 is one of the programming languages that ta

Like any spoken or written language, Visual Basic has syntax rules a

you can use to create your applications. Visual Basic is a popular ch

some people find the syntax simpler than the syntax of many othe

If you have used an older version of Visual Basic (such as Visual Bas

find some familiar constructs and a familiar user interface (UI) in Vi

 Visual Basic 2008 is a fully fledged object-oriented programm

about what this means.

 It’s not necessary to have

Visual Studio to develop .NET

applications, but using it offers

many advantages, as you’ll see in

this book.

I M P O R TA N T
The CLR hasn’t changed in

Windows Vista and Visual

Studio 2008; the CLR that is run-

ning on all operating systems is

.NET 2.0.

What Is Visual Basic 2008?

Is Visual Basic 2008 an Object-Oriented
Programming Language?

5

M O R E I N F O
With C++ you can develop proce-

dural applications, pure object-

oriented applications, or a mix

of both.
Chapter 1: Introducing Microsoft Visual Basic 2008 Express Edition

 Object-oriented programming (OOP) is a programming style (or programming para-

digm). There are other programming paradigms, such as functional or procedural program-

ming. Languages such as C, Fortran, Pascal, and previous versions of Visual Basic all use

functional or procedural programming paradigms. These paradigms focus more on the

actions, while OOP focuses more on the data itself.

 Applications that use the OOP paradigm are developed using OOP languages (OOPLs).

The first OOPLs were introduced in the late 1960s, but they really became popular in the late

1970s. They are widely used today because most people agree that they’re easy to learn, use,

debug, and maintain. For instance, OOPLs easily represent real-world objects. Visual Basic

2008 is an OOPL as are C#, C++, Java, Smalltalk, Lisp, and others.

 Programmers use OOP to write programs that represent the decomposition of real-

world problems into modules. Those modules represent real-world objects and are known as

classes or types. You can think of an OOP program as a collection of objects interacting with

each other. Using OOP, a programmer defines new types to represent real-world objects,

such as a plane, a person, a customer, a dog, or a car. Those types or classes have what are

known as constructors, which developers use to create objects or instances. An object in a

program is a unit that represents one instance of a real-world object. It’s a self-contained

unit because it includes all the data and functionality associated with that object. This means

each object created in an application contains all the information that characterizes it (data

members or fields) and all the actions (methods) that can access or modify that information.

 Here is a simple example in Visual Basic 2008 that defines a Person class:

 1 Public Class Person
 2 ‘Data members
 3 Private Name As String
 4 Private Address As String
 5 Private City As String
 6 Private State As String
 7 Private ZIP As String
 8 Private Country As String
 9
10 ‘Methods
11 Overridable Sub Display()
12 Console.WriteLine(Name)
13 Console.WriteLine(Address)
14 Console.WriteLine(City)

dition: Build a Program Now!

d to print the object’s

 Overridable keyword means

n implementation of the

 more. My dog, Chopin,

the Animal class. Because

 for a dog. But because a

ors from the Animal class.

 members that character-

ample, here is the instance
6 Microsoft Visual Basic 2008 Express E

15 Console.WriteLine(State)
16 Console.WriteLine(ZIP)
17 Console.WriteLine(Country)
18 End Sub
19 End Class

 This class includes private data members and a Display metho

content to the console. The Sub method is by default public. The

that a new class derived from this class will be able to write its ow

Display method.

 Let’s use a different example to go over these concepts some

is an instance of the class Dog, and the class Dog is a subclass of

Chopin is a dog, he has some behaviors and data that are proper

dog is also an animal, Chopin also inherits some data and behavi

 This means that the instance Chopin of the class Dog has data

ize him and methods that I can call on that little furry ball. For ex

information for the Chopin object:

Data
Breed ■ He’s a Maltese.

Gender ■ He’s male.

Weight ■ His weight is 5.5 pounds (2.5 kilograms).

Color ■ He’s white.

Name ■ His name is Chopin Chabispel.

Age ■ He’s three years old.

Actions
He speaks (barks). ■

He eats. ■

He moves. ■

He sleeps. ■

M O R E I N F O
In the example of the Person

class, you would need to imple-

ment properties to access or

modify the Private fields from

outside the class. These types of

fields hide data in your class.

7

T I P
In this book, you’ll notice that

some code listings include line

numbers. If a line does not

include a number, it indicates

that the code is a continuation

from the previous line. Some

code lines can get rather long and

must be wrapped to be displayed

on the printed page. If you need

to type the code in Visual Basic,

be sure to put continued lines on

a single line.
Chapter 1: Introducing Microsoft Visual Basic 2008 Express Edition

All these data items (breed, gender, weight, color, name, and age) and actions (speak,

eat, move, and sleep) characterize him, but they can also characterize any other dog, such as

my neighbor’s dog, Molly. And if you think about it, those items can characterize any animal.

This means that the class Dog inherits data members and methods from the class Animal.

 Let’s say you want to develop an application for a veterinary clinic. To cover the cats

who come to your clinic, all you must do is create a Cat class that also inherits from the class

Animal. Then each class (Cat and Dog) could override functionality in the Animal class as

needed. For instance, for the Cat class the Speak method would be meows instead of barks.

This means that those Speak methods for Cat and Dog are specializations of the regular

animal Speak method.

 Let’s look at the Person class example again. This time, I’ll also show an Employee class

that derives from the Person class. The Employee class derives from the Person class by using

the keyword Inherits followed by the Person element. The keyword Overrides changes the

implementation of the Display method.

20 Public Class Employee
21 Inherits Person
22
23 Public Level As Integer
24 Public Salary As Integer
25
26 Overrides Sub Display()
27 Console.WriteLine(Name + “ is at level “ + Level.ToString() +
 “ and has a salary of : “ + Salary.ToString() + “$”)
28 Console.WriteLine(“His address is:”)
29 Console.WriteLine(Address)
30 Console.WriteLine(City + “,” + State + “ “ + ZIP)
31 Console.WriteLine(Country)
32 End Sub
33 End Class

 In this case, the Employee class inherits from the Person class and therefore gets all the

data fields from that base class. The Employee class doesn’t have to redefine any of the fields

in its definition because it gets them automatically from Person. So, for the Employee class,

you must specify only what is different from an instance of the Person class. For example, an

instance of the Employee class would have Level and Salary, whereas none of the instances

n: Build a Program Now!

us add level and salary

ts. Visual Basic 2008

k you’ll see more OOP

mation box, as shown in

of the Customer class:
8 Microsoft Visual Basic 2008 Express Editio

of the Person class would. The Display method for Employee could th

information to the displayed message when it is called.

 This was just a brief introduction to OOP and some of its concep

supports all of these concepts and many more. Throughout this boo

concepts, and when you do, I’ll highlight them in a “reader aid” infor

the left margin.

 Here’s the complete listing used in this section with the addition

34 Imports System
35
36 Public Class Person
37 ‘Data members
38 Public Name As String
39 Public Address As String
40 Public City As String
41 Public State As String
42 Public ZIP As String
43 Public Country As String
44
45 ‘ Methods
46 Overridable Sub Display()
47 Console.WriteLine(Name)
48 Console.WriteLine(Address)
49 Console.WriteLine(City)
50 Console.WriteLine(State)
51 Console.WriteLine(ZIP)
52 Console.WriteLine(Country)
53 End Sub
54 End Class
55
56 Public Class Customer
57 Inherits Person
58
59 Public ID As Integer
60 Public IsPartner As Boolean
61
62 Overrides Sub Display()
63 Dim partnerMessage As String
64
65 If IsPartner Then
66 partnerMessage = “ is a partner”

N O T E
 In .NET, all classes ultimately

derive from the Object class, even

when it is not specified.

9
Chapter 1: Introducing Microsoft Visual Basic 2008 Express Edition

67 Else
68 partnerMessage = “ is not a partner”
69 End If
70
71 Console.WriteLine(“Customer ID: “ + ID.ToString())
72 Console.WriteLine(Name + partnerMessage)
73 Console.WriteLine(Address)
74 Console.WriteLine(City + “,” + State + “ “ + ZIP)
75 Console.WriteLine(Country)
76 End Sub
77 End Class
78
79 Public Class Employee
80 Inherits Person
81
82 Public Level As Integer
83 Public Salary As Integer
84
85 Overrides Sub Display()
86 Console.WriteLine(Name + “ is at level “ + Level.ToString() + “ and
 has a salary of : “ + Salary.ToString() + “$”)
87 Console.WriteLine(“His address is:”)
88 Console.WriteLine(Address)
89 Console.WriteLine(City + “,” + State + “ “ + ZIP)
90 Console.WriteLine(Country)
91 End Sub
92 End Class

 This is a simple case, but it illustrates some of the basic concepts of OOP.

What Is Visual Basic 2008 Express Edition?

 Visual Basic 2008 Express Edition is the tool we will use throughout this book to develop

applications that run on Windows. The Express editions of Visual Studio 2008 were designed

ion: Build a Program Now!

dio 2008, the Express

ools because their phi-

l Studio are easy to use,

ly the same components,

ns of Visual Studio. Most

 make the learning curve

inner programmers in

ho are looking for an

ram. Visual Basic 2008

ns for topics you really

day-to-day job or school

earning to program.

he following types of

phical interface with

ord or Windows Internet

WPF, which lets you build

ll the power of your com-

ta–based applications.

aphical interface and that

pplications run in a com-

 tools created to help

. To create any type of

er 2008 Express Edition.
10 Microsoft Visual Basic 2008 Express Edit

to focus on productivity. As with the high-end versions of Visual Stu

editions are also what we call rapid application development (RAD) t

losophy is geared toward productivity. The Express editions of Visua

easy to learn, and streamlined because although they contain most

they lack the full breadth of features found in the higher-end versio

features and components in the Express editions were simplified to

less steep and to fit the needs of the nonprofessional developer.

 The Visual Studio 2008 Express editions were designed with beg

mind—people like you who are curious about programming and w

easy way to build Windows applications while learning how to prog

Express Edition is the ideal tool to use to rapidly develop applicatio

love or for hobbies you enjoy. You can also use it to help ease your

tasks. Most important, you can have fun with the tool while you’re l

What Kinds of Applications Can You Build with
Visual Basic 2008 Express Edition?

 With this version of Visual Studio 2008, you’ll be able to create t

applications:

Windows applications ■ These are applications that have a gra

buttons, windows, menus, toolbars, and so on, as in Microsoft W

Explorer. With this book you’ll be able to take full advantage of

applications that create a rich user experience while exploiting a

puter. You can also build applications that look like Windows Vis

Console applications ■ These are applications that have no gr

simply use text to communicate with the user. (Typically, these a

mand window or DOS window.)

Reusable components or class libraries ■ These are groups of

build other applications.

 What you won’t be able to build are Web sites and Web services

Web application, you will need to get Microsoft Visual Web Develop

N O T E
 We will look into the details

of what types of applications

fall into these categories in

Chapter 3, “Creating Your First

Applications.”

11

What Are the Key Features You Need to Know About?
Chapter 1: Introducing Microsoft Visual Basic 2008 Express Edition

 The following list, although not complete, provides the essential features of Visual Basic

2008 Express Edition. At this point, don’t worry if you don’t understand every feature listed.

I’m presenting the features in the list because you’ll come across all of them in some way in

the fun sample applications you will be creating as you read this book.

Most of the features listed here emphasize the RAD philosophy. Although the idea is to

give you an overview of the interesting features that can make your life easier, the names

of the features alone are not sufficient to understand what they mean. I’ve included a brief

description giving you the essentials and explaining how they will help you develop applica-

tions.

Built-in Starter Kits ■ The Starter Kits are fully developed applications with best practices

and examples to follow. These applications will give you another example on which to

base your learning. They will be a good complement to what we are doing in this book.

You can find them at http://msdn2.microsoft.com/en-us/vbasic/ms789080.aspx.

Beginner’s targeted documentation and tutorials ■ These are a fast and easy way to

get information. They also provide samples.

IntelliSense ■ This feature provides real-time syntax suggestions and even finishes your

typing for you. In Visual Studio 2008, IntelliSense, as you will see, is everywhere (it’s now

called IntelliSense Everywhere), and it provides a more complete and contextual set of

suggestions.

Code snippets ■ Snippets provide code for more than 200 programming tasks to help

you complete many common tasks automatically. In addition, code snippets show the

recommended way of performing a task. They are directly integrated into the develop-

ment environment, and they are extensible; that is, anybody can extend the existing snip-

pets or provide new ones. Over time Microsoft will continue to supply new code snippets,

and members of online communities will contribute their snippets as well. Code snippet

extensibility seems to be a really nice feature that will help people share useful features in

online communities.

My ■ construct This new Visual Basic feature provides simple access to popular .NET

Framework classes and common tasks. With it you can perform tasks without knowing

ition: Build a Program Now!

d provide you with an easy

e snippets, the My con-

 one line of code.

n connect to Microsoft SQL

cess the data in your appli-

develop applications that

tures of .NET 3.5 included

r 8, “Managing the Data.”

new tools, you can easily

 or WPF, including features

in your form, and autocor-

ave to compile your code

them to you as you type

ication Markup Language

 language is used exten-

terface elements in WPF

.)

ools and wizards that will

ill help you utilize their

ve list of controls—a

hey will help you create

he product include Smart

tem, a Smart Tag is rep-

triangle, attached to a

tions you can perform
12 Microsoft Visual Basic 2008 Express Ed

all the framework internals. These tasks are nicely wrapped an

and clean way of getting things done. Although similar to cod

struct elements have their source code hidden and wrapped in

Data-enabled applications ■ With these applications you ca

Server 2005 Express Edition and add databases and code to ac

cations. In addition, a new editor has been added to help you

use data. As mentioned earlier, LINQ is one of the big new fea

with Visual Studio 2008, and you’ll see how to use it in Chapte

Windows Forms Designer and WPF Designer ■ With these

design your Windows application using either Windows Forms

such as snap lines, which make sure your controls are aligned

rect, which gives you real-time compiler feedback. You won’t h

to know whether you have errors; Visual Basic 2008 will show

and even give you potential fixes.

XAML Editor ■ The XAML Editor lets you edit Extensible Appl

(XAML), which was introduced with .NET 3.0. This new markup

sively in WPF and Windows Workflow (WF) to describe user in

and process logic in WF. (WF is beyond the scope of this book

XML Web services ■ Visual Basic 2008 provides easy-to-use t

help you connect to published XML-based Web services and w

functionality.

New Windows Forms controls ■ These comprise an impressi

greater selection than in any previous version of Visual Basic. T

user interfaces that have a professional look and feel.

Smart Tags ■ Most Windows Forms controls that come with t

Tags. As in many applications of the 2007 Microsoft Office sys

resented by a little black triangle, or an icon and a little black

control. A Smart Tag gives you access to the most common ac

on a control.

M O R E I N F O
XAML is also used in Silverlight

for Web applications, but this is

beyond the scope of this book.

13

ClickOnce deployment ■ With this feature you can easily publish your applications on
Chapter 1: Introducing Microsoft Visual Basic 2008 Express Edition

the Internet, on a local area network (LAN), on a network share, or on a CD. It also simpli-

fies publishing updates. In this new edition of Visual Studio, you can now use a wizard to

handle the Windows Vista User Account Control (UAC) so that your application runs in

the lowest user security context it needs. Usually you want to aim your software develop-

ment on Windows Vista at regular users. This has the effect of reassuring users that your

application won’t perform unsafe operations without their knowledge.

Edit and Continue ■ While you are debugging your application, the Edit and Continue

feature lets you modify the code, move back and forth in the debugger, re-execute code,

add functionality, or fix bugs on the fly without stopping program execution.

Debugger visualizers ■ While you are debugging your application, the visualizers give

you an easy way to get readable representations of your application data. They give you

a human-readable representation of the stored data, even for more complex types found

in ADO.NET or XML.

Community Access and Start pages ■ With these features, you can access additional

information from online communities and from different sources of online help, including

diverse RSS feeds. (RSS can stand for Rich Site Summary or Really Simple Syndication and

is a family of XML file formats; it is widely used by the weblog community and news

Web sites.)

Simplified development environment ■ Everything in the development environment

was created so that you can easily access key functionality, tools, and objects.

 As you can see, Visual Basic 2008 Express Edition includes many nice features to help

new programmers develop applications in a fast and fun way. These features will provide

guidance even when you’re not necessarily sure what syntax or components to use and will

greatly expedite learning the product.

tion: Build a Program Now!

s, tools, languages,

ine, and it is responsible

s like a house with the

also learned that the CLR

t of new building blocks

y Windows Vista and

nted programming

g languages. You also

cs of OOP in Visual Basic

important features of

ow to install Visual
14 Microsoft Visual Basic 2008 Express Edi

In Summary…

 You now know that .NET is a framework composed of compiler

debuggers, and an execution engine. The CLR is that execution eng

for loading and executing managed applications. In essence, .NET i

CLR as the foundation and all other services built on top of it. You

didn’t change with Windows Vista and Visual Studio 2008, but a lo

have been added so you can take advantage of features provided b

make developing applications easier.

 In addition, you learned that Visual Basic 2008 is an object-orie

language that has a simpler syntax than most modern programmin

started to learn what object-oriented programming is and the basi

2008.

 This chapter gave you the opportunity to hear about the most

Visual Basic 2008 Express Edition. In the next chapter, you’ll learn h

Basic 2008 Express Edition.

15

l Basic 2008 Express Edition

e included with it. I’ll guide

that you will be ready to start

press Edition right away.

allation scenarios, give you

what to do if the unexpected

forward, following in the spirit

2
Preparing to Install
Visual Basic 2008 Express
Edition, 16

Installing Visual Basic
2008 Express Edition, 17

Chapter 2
Installing Visual Basic
2008 Express Edition

In this chapter, you’ll install Microsoft Visua

and start getting to know what components ar

you through all the steps of this installation so

building applications using Visual Basic 2008 Ex

In addition, I will talk about some common inst

some tips for installing the product, and cover

happens.

The installation process is easy and straight

of the Microsoft Visual Studio Express editions.

on: Build a Program Now!

ticularly if you’ve had

rsion of the product.

 software and hard-

the necessary informa-

updates from Windows

s (http://update.

puter has all the lat-

e starting the product

unning, it might prompt

ith the latest Microsoft

are/software/default.

 few other times the

and continued. If you are

 slightly, but it will bear

ucts are giving you an

all. When you’re sure it’s

 to allow the action.

y not the only person

me information main-

 solve the installation

.

, say Visual Studio 2002

 any Visual Studio 2008

cution, and you can go

bout installing the
16 Microsoft Visual Basic 2008 Express Editi

You have a couple of options for installing Visual Basic 2008, par

previous versions installed or if you installed an early (prerelease) ve

Before you start the installation, make sure your computer meets the

ware recommendations. Review the introduction of this book for all

tion. You will also want to be sure that your computer has the latest

Updates (http://windowsupdate.microsoft.com) and Microsoft Update

microsoft.com). Installing the latest updates will ensure that your com

est security updates along with some installation prerequisites befor

installation.

If you have an antivirus or antispyware application installed and r

you to choose to allow certain setup tasks to proceed. For instance, w

Windows Defender (http://www.microsoft.com/athome/security/spyw

mspx), I was asked two times to allow certain tasks to proceed, and a

antispyware product recognized the source and simply mentioned it

using a different antispyware application, your experience might vary

some similarities to this process. These antivirus and antispyware prod

opportunity to confirm the origin of the product you’re about to inst

from Microsoft, let the setup application continue its job by choosing

During the installation, if something goes wrong, you’re probabl

to encounter the problem. Your first step is to look at the latest Read

tained by the setup team on MSDN and follow the steps provided to

problem. Here is the link: http://www.microsoft.com/express/support/

Side-by-Side Installation

If you have a previous version of Visual Studio on your computer

or Visual Studio 2003, installing Visual Basic 2008 Express Edition (or

product) will be straightforward. This is considered a side-by-side exe

straight to the “Installing Visual Basic 2008 Express Edition” section a

software.

Preparing to Install Visual Basic 2008 Express Edition

C A U T I O N
 Please make sure you carefully

read the article at http://msdn2.

microsoft.com/en-us/vs2008/

bb964521.aspx before starting

the uninstall process!

17

M O R E I N F O
 Because of a new feature called

multitargeting, you can compile

any project to .NET 2.0, .NET

3.0, or .NET 3.5. After success-

fully installing Visual Basic 2008

Express Edition, you can safely

uninstall Visual Basic 2005 Express

Edition because with Visual Basic

2008 Express Edition, you can tar-

get .NET 2.0 and also get the ben-

efits and new features of Visual

Basic 2008 Express Edition.

N O T E
 Even though Microsoft doesn’t

officially support prerelease ver-

sions of the software, you will

find resources on Microsoft’s

Web site to help you with instal-

lation. In particular, you will find

information on how to uninstall

(and in what order to uninstall)

the products. Look at the forums

at the following address for help

on uninstalling any Beta 2 instal-

lations (you’ll need to sign in

using a Windows Live ID to get

to this article): http://forums.

microsoft.com/msdn/showforum.

aspx?forumid=1346&siteid=1.
Chapter 2: Installing Visual Basic 2008 Express Edition

Prerelease Versions of Visual Basic 2008 Express Edition

When you uninstall a prerelease version of any software, you might encounter problems.

At some point, you might have no choice but to reformat your hard disk and reinstall your

operating system. This situation is not uncommon when you work with prerelease software,

but there is a solution. Before beginning the uninstall procedure, and as a precautionary

measure, be sure to back up all your data. If possible, a good practice is to avoid installing

any prerelease versions of any products on your main computer. Using a test machine (or

virtual software) will help you avoid losing any important data and won’t slow your produc-

tivity in the event something goes wrong. You can learn more about the virtual solution that

Microsoft offers, called Microsoft Virtual PC 2007, at http://www.microsoft.com/windows/

virtualpc/default.mspx.

Luckily with Visual Studio 2008, all Community Technology Preview (CTP) and pre–Beta 2

versions were “time-bombed” virtual images provided by Microsoft; therefore, the chance of

ruining your main computer has been almost eliminated. You simply have to delete the

Virtual PC image provided by Microsoft, and you should be good to go with the released

version of the product. But if you have installed Visual Basic 2008 Express Edition Beta 2 and

you didn’t use a Virtual PC image, you will have to uninstall the beta version before you

proceed with installing the released version.

Installing Visual Basic 2008 Express Edition

Now that we’ve addressed a lot of potential issues and your computer is ready, you can

proceed with the installation. You will find a companion DVD with this book that contains a

full working edition of the product. Simply insert it into any available CD/DVD drive in your

system, and follow the steps listed next.

ion: Build a Program Now!

atically. If it doesn’t start

lect Explore.

nstallation Wizard.

age, click Microsoft Visual

ram.

he license terms

 can’t do with this

ense agreement, select

, and then click Next to

y to a temporary folder

 2-2
ing the setup process
18 Microsoft Visual Basic 2008 Express Edit

TO INSTALL VISUAL BASIC 2008 EXPRESS EDITION

If autorun is enabled, the installation process should start autom

automatically after a few seconds, follow these steps:

1. Click the Start button, and then click Computer.

2. Right-click the CD/DVD drive that has the product media, and se

3. In the list of files, locate and double-click Setup.hta to start the I

4. On the Welcome to Visual Studio 2008 Express Editions Setup p

Basic 2008 Express Edition.

Within a few seconds, you should see that

the setup program is copying all the neces-

sary installation files to a temporary folder, as

shown in Figure 2-1.

When the setup program is done copying

the files, the setup application loads into

memory. While the application is loading,

you’ll see an initialization progress bar, as shown

in Figure 2-2.

Next, you’ll be greeted by the Welcome to Setup page

(Figure 2-3), which provides some information about the

product and the possibilities you’ll have working with it.

You can select the check box if you want to send anony-

mous data about your experience installing the product to

Microsoft. This program is totally anonymous, and you can

read the policy to see exactly what type of information will

be sent. Click Next to continue or Cancel to exit the installation prog

To continue the installation process, you must read and accept t

(Figure 2-4). Please read the terms carefully to see what you can and

product. When you have finished and you’re ready to accept the lic

the option button that says you have read and accepted the license

continue.

I M P O R TA N T
 If you install Visual Basic 2008

Express Edition on the Windows

Vista operating system, you

should be prompted by the

Windows Vista User Access

Control dialog box to give the

setup process permission to

continue. If you have been using

Windows Vista for a while, you

have probably seen this dialog

box many times. Click Continue

to proceed with the installation.

Figure 2-1
Copying setup files locall

N O T E
 You’ll have nothing to do but wait

at this point. The wait should not

be long—less than a minute in

most cases, depending on your

computer’s speed.

Figure
Initializ

M O R E I N F O
 You’ll see a check box at the

bottom of the License Terms

page that enables Visual Studio

to receive and display plenty of

useful information, such as tips,

blogs, and samples about .NET

and Visual Basic. If you clear it,

you can always select it again

after the product is installed by

using the Tools menu.

19

N O T E
 The only reason not to install the

local MSDN Help or SQL Server

2005 Express Edition is limited

hard disk space. Be sure you

understand the consequences

of your selections. If you don’t

install MSDN Express Library,

you’ll need access to the Internet

to get help from MSDN Online. If

you don’t install SQL Server 2005

Express Edition, you won’t be able

to create applications that need

to access other sources of data,

such as Microsoft Access database

information, XML files, or other

types of RDBMS information. In

addition, some sample files from

this book won’t work automati-

cally, and you’ll have to perform

some manipulations or re-instal-

lations to get them to work.
Chapter 2: Installing Visual Basic 2008 Express Edition

Figure 2-3
Welcome to Setup page

Figure 2-4
License terms

The Installation Options page appears, as shown in Figure 2-5. On this page, be sure to

specify that you want access to the Help system (MSDN Express Library) and Microsoft SQL

Server 2005 Express Edition.

SQL Server 2005 Express Edition is a relational database management system (RDBMS)

with which you can easily manipulate data in your application. This is an important step. For

example, if you’re creating the DVD collection management application that is included as

one of the Starter Kits, all the data related to your DVD collection will need to be stored in a

database using SQL Server 2005 Express Edition.

ition: Build a Program Now!

 Silverlight directly in this

 smoother and richer

t of disk space, because it is

.

This page will ask you

 use the default location.

ar appears, which means

 time to get something to

M O R E I N F O
20 Microsoft Visual Basic 2008 Express Ed

Figure 2-5
Setting your installation options

The last product to install is Silverlight. Although we won’t use

book, I strongly recommend you install it because you will have a

experience on many Web sites. Silverlight 1.0 will not take up a lo

only a few megabytes.

When you’re done with your selections, click Next to continue

The Destination Folder page appears, as shown in Figure 2-6.

where to install the software on your computer. I recommend you

Click Install to start the installation. The installation progress b

the installation is underway! (See Figure 2-7.) This might be a good

drink because the installation could take some time.

 Silverlight, previously named

WPF Everywhere (WPF/E), is a

cross-browser, cross-platform

plug-in for delivering the next

generation of .NET-based media

experiences and rich interactive

applications for the Web. From

a user point of view, Silverlight

behaves like Adobe Flash, but

Silverlight is richer in terms

of what you can do and, more

specifically, how you can do it.

With Silverlight 2.0, for example,

you will be able to use your

Visual Basic skills and expertise

to develop Silverlight applica-

tions. You can find nice samples,

documentation, and much more

about Silverlight at http://www.

silverlight.net.

C A U T I O N
 If you choose to install the soft-

ware in a folder other than the

recommended default, you might

have problems working with

some of the paths and files men-

tioned later in the book. If you

do install in a different location,

rest assured I’ll give you some

cautionary notes whenever you

might run into problems.

N O T E
 The installation time will vary on

the basis of your choices on the

previous page. On average, if you

selected both MSDN Library and

SQL Server 2005 Express Edition,

the installation should take about

10 to 30 minutes, depending on

your computer’s speed.

21
Chapter 2: Installing Visual Basic 2008 Express Edition

Figure 2-6
Destination Folder page

Figure 2-7
Installation Progress page

Here is the list of components that will be installed:

The .NET Framework 3.5 ■ This was the outer circle of the image illustrated in

Figure 1-1.

Visual Basic 2008 Express Edition ■ This is the tool itself.

Microsoft SQL Server Compact 3.5 ■ This is a version of SQL Server that lets you, as

the developer, embed a compact database on smaller devices, such as Windows Mobile–

based phones or even on your Windows–based desktop or laptop.

MSDN Express Library for Visual Studio 2008 ■ This was described earlier.

SQL Server 2005 Express Edition ■ This was described earlier.

When the Setup Complete page appears (see Figure 2-8), you are now finished with the

installation. That wasn’t too painful, was it? Before you click the Exit button, please read the

following notes.

ition: Build a Program Now!

t to go to Microsoft

indowsupdate.microsoft.

soft Update hyperlink

ft Update because you get

alled on your hard disk.

erver, Windows Defender,

, all in one stop!

ur antivirus application

that you have updated

ol Panel, open the Security

 firewall, virus protection,

rity settings are green. If

ny security hazards.

 done. If you elected to

 to Microsoft on exit, the

soft’s servers, as shown in
22 Microsoft Visual Basic 2008 Express Ed

Whenever you install a new application, it’s always a good habi

Update (http://update.microsoft.com) or Windows Update (http://w

com) to get all the high-priority updates. Or you can click the Micro

from the setup application, as shown in Figure 2-8. I prefer Microso

all the updates you need for all the Microsoft software already inst

You’ll get updates for Windows, the Microsoft Office system, SQL S

and the .NET Framework along with your hardware drivers updates

It’s also important to verify that yo

and its signatures are up-to-date and

antispyware installed. Finally, in Contr

Center, and make sure all lights for the

automatic updates, and all other secu

not, address those issues to prevent a

Click the Exit button when you are

send the feedback of your installation

setup application will send it to Micro

Figure 2-9.

Figure 2-9
Sending installation feedback to the
Microsoft servers

T I P
 In the future, more products will

be added to the list of products

supported by Microsoft Update.

Figure 2-8
Setup Complete page

23
Chapter 2: Installing Visual Basic 2008 Express Edition

In Summary…

This chapter focused on installing Visual Basic 2008 Express Edition. It addressed most

issues you might encounter during the installation, it covered different setup scenarios, and it

provided links to MSDN for more help.

After working through this chapter, you should now have the .NET Framework 3.5, Visual

Basic 2008 Express Edition, MSDN Express Library for Visual Studio 2008, SQL Server Com-

pact 3.5, Silverlight 1.0, and SQL Server 2005 Express Edition installed and ready to go. Your

computer should also be up-to-date with all updates installed and all security settings on

green.

Whenever you’re ready to explore the integrated development environment (IDE) and

write your first two applications, just jump to the next chapter.

25

 Express Edition, so now it’s

t this chapter by learning

tions, Windows applications,

pplications. You’ll then look

E). As its name implies, the

 you need to design, plan,

ould use any text editor, such

tions, but in this chapter and

e IDE.

 a fairly simple application

be a simple application as

oes a little bit more than just

 to create an application that

lt. With this application you’ll

 documentation and Help

ion.
3
Three Types of
Applications: What Are
the Differences?, 26

Getting Started with the
IDE, 28

Building the Projects, 31

Chapter 3
Creating Your First
Applications

You’ve installed Microsoft Visual Basic 2008

time to create your first applications. You’ll star

about the differences between console applica

and Windows Presentation Foundation (WPF) a

at the integrated development environment (ID

IDE is the application that provides all the tools

develop, and distribute your applications. You c

as Notepad, for example, to create your applica

for the reminder of the book, you’ll be using th

Most programming books usually start with

called “Hello, World.” Your first application will

well, but you’ll be creating an application that d

say “Hello” to the world. Specifically, you’ll learn

adds two numbers together and outputs a resu

also learn about Solution Explorer as well as the

system built into Visual Basic 2008 Express Edit

ion: Build a Program Now!

: a console application

ven have to worry about

type of application you

ll interact with it.

terface. For instance,

 they don’t need a

ation except to start it.

ything is displayed in a

ows referred to by many

ply the command

e text.

on as a console
26 Microsoft Visual Basic 2008 Express Edit

In this chapter, you’ll create two versions of the same application

and a Microsoft Windows application. You might wonder why you e

the type of application when you’re creating a program. Often, the

create depends on the purpose of the application and how users wi

Sometimes your application doesn’t need to have a graphical in

some applications need to be executed in a script or a batch file, or

graphical interface because no user usually interacts with the applic

This type of application is called a console application because ever

system console window. You might have heard these types of wind

different names: a DOS window, a command prompt window, or sim

window. The most common output in a console application is simpl

Figure 3-1 shows the result of the famous “Hello, World” applicati

 application.

Figure 3-1
A console application

Three Types of Applications: What Are the Differences?

N O T E
 Please note that console appli-

cations are still executed in

Windows but in the console.

M O R E I N F O
Simple text (also called ASCII characters) is the usual output of a console

application, but some console applications use ASCII graphic characters.

(ASCII stands for American Standard Code for Information Interchange.)

An ASCII code is the numerical representation of a character (such as 0

or #) or an action of some sort. Pressing Enter in a word processor to

move to a new line of text is an action represented by an ASCII character,

for instance. The ASCII graphic character set, also called extended ASCII

characters, includes vertical lines, vertical double lines, corners, and much

more. ASCII characters are sometimes used to create boxes around text in

console applications. Unicode characters are similar to ASCII but are not

encoded in the same way. They are more extensive and can represent dif-

ferent locales.

N O T E
 Console applications can be

written in many different pro-

gramming languages (C, C++,

C#, Visual Basic, and so on) and

scripting languages (Perl, Python,

JScript, and so on).

27

N O T E
A Windows service is a type of

Windows application that runs

on Windows in the background;

it doesn’t have a user interface,

doesn’t produce any visual out-

put, starts when Windows starts,

and doesn’t even require a user to

be logged in to start executing.

Windows XP Service Pack 2 (SP2)

and the Windows Vista operat-

ing system come with roughly

four dozen Windows services. For

example, one built-in Windows

service validates your user name

and password at start-up.
Chapter 3: Creating Your First Applications

Console applications can be much more complex

than the “Hello, World” example shown here. In fact,

they can have as rich a set of features as Windows

applications. The only difference is that they don’t have

a graphical interface. For example, in corporate data

centers, many applications execute all day and night,

producing a large amount of data. It would be time-

consuming and problematic to rely on people to verify

the data. So, data centers are usually highly automated

to facilitate this job; they use console applications that

produce, manipulate, and verify the data in scripts or

batch files.

In contrast to a console application, a Windows

application has a graphical interface, as shown in

Figure 3-2. (This type of application is also called a Windows

Forms application in .NET.)

These applications are usually accessible from the Windows

Start menu, and by default they share some common characteristics,

such as a Close button, a Maximize button, and a Minimize button, as

shown here:

A third type of application—a WPF application—also

has a graphical interface and looks similar to a Windows

application; however, WPF applications use a completely

different set of libraries to generate their executable

files. For our work in this chapter, it is enough to say that

WPF applications can provide a richer experience and

use a different approach for their design.

Figure 3-3 shows a WPF application in action. I will

explain them much more fully in Chapter 6, “Modifying

Your Web Browser.”

Figure 3-2
A Windows application includes a graphical
interface.

Figure 3-3
A WPF application

ion: Build a Program Now!

st application, you’ll need

 these three easy steps:

08 Express Edition.

ry. Look at Figure 3-4,
28 Microsoft Visual Basic 2008 Express Edit

To get started writing the code for the console version of your fir

to start Microsoft Visual Basic 2008 Express Edition. To do this, follow

click Start, click All Programs, and then click Microsoft Visual Basic 20

Before we go further, let’s pause and admire the IDE in all its glo

and feel the excitement.

Figure 3-4
The IDE in all its glory

Getting Started with the IDE

N O T E
 The first time you start Microsoft

Visual Basic 2008 Express Edition,

it will take some time to load

because the IDE is being config-

ured for the first time.

29

T I P
 The first and only rule of this

book is to not be afraid to experi-

ment. Click, look, read, and try

whenever possible. This is really

the best way to learn. I’ll show

you some important material,

tips, and tricks throughout this

book, but my advice to you is to

go beyond these examples and

just try and try and try.

N O T E
 I will show you how and where

to look for this generated code

in Chapter 5, “Using Rapid

Application Development Tools

with Visual Basic 2008.”

N O T E
 Some hyperlinks on the Start

Page require a live connection to

the Internet. So if you are unable

to read the hyperlinks, please

verify your Internet connection

status.
Chapter 3: Creating Your First Applications

If you’re not feeling the excitement yet, you soon will be. The development environment

has been designed to make a lot more information available up front and to make you more

productive more quickly. From this screen, everything you need to build an application is

available in a couple of clicks. This is where you type your code, compile your code, launch

the application, find your mistakes and fix them, get help on the syntax, and perform many

other tasks. Furthermore, the Visual Basic 2008 Express Edition IDE is designed to generate a

lot of code for you so that you have less to type. If you didn’t have the IDE and you wanted

to write a Windows Forms application, you would have to type a lot more code, and this is

prone to errors. With the IDE, most of the actions you’ll perform will automatically generate

the code for you behind the scenes.

As you spend more time with the IDE, you’ll find that there are many ways to perform

the same actions. For instance, to complete a specific action, you can use a series of menu

choices, you can use a keystroke shortcut, you can click an icon on a toolbar, you can click a

hyperlink in a page, or you can right-click and choose an option from a context-sensitive

menu. Before diving into our first application and before writing some code, we’ll go

through each big component of the IDE.

The first page you see when you start the IDE is a really useful one: the Start Page. It

contains a lot of useful information:

Recent Projects pane ■ Here you’ll get the list of projects or solutions that were

recently opened. You can also create a new project or open an existing project that is

not in the list.

Getting Started pane ■ I call this useful pane “Help Central” because if you need

quick help, this is one of the best places to get answers. Whether you need help with

some Visual Basic constructs, you want to see a list of how-to articles, or you simply

want hyperlinks to communities of programmers, you can often find these items in the

Getting Started pane of the IDE.

Visual Basic Express Headlines pane ■ This is where you find specific news about Visual

Basic Express Edition from Microsoft. These product headlines deliver special messages

specific to Visual Basic 2008 Express Edition and announce new updates, new releases,

new code snippets, or anything that needs attention on your part.

tion: Build a Program Now!

to articles from one of

e these articles for any

sual Basic 2008 Express

er Visual Basic Express

 from MSDN cover not

l Studio Team Systems,

ify the feed by clicking

tup, and updating the

ice..

rt Page:

l possible actions related

ased on the current

 have fewer menu choices:

roject is open, the menu

shortcuts to popular

.

 applications. If you scroll

 will expand. If you don’t

u can think of controls as

al interface. For instance,

ls, text boxes, menus,

 Chapter 5.

s in your project. If no

n Explorer later in this

on corresponding to

ad a project, you’ll see a
30 Microsoft Visual Basic 2008 Express Edi

MSDN feeds ■ This pane of the Start Page includes hyperlinks

MSDN’s Really Simple Syndication (RSS) feeds. You can configur

valid RSS feed from the Web. The default is set to the MSDN Vi

RSS feed. These articles are usually different from the ones und

Headlines; occasionally they might be the same, but the articles

only Visual Basic Express Edition but also topics including Visua

Microsoft SQL Server, Web services, and so forth. You can mod

Tools and then Options, expanding Environment, selecting Star

Start Page News Channel field with a valid RSS feed of your cho

Some important components of the IDE are not part of the Sta

Menu bar ■ This is where you can select and perform almost al

to your projects, files, and Help. The options available change b

context. For example, when you don’t have a project open, you

File, Edit, View, Tools, Window, Community, and Help. When a p

choices will also include Project, Build, Debug, and Data.

Main toolbar ■ This toolbar contains icons that are essentially

actions that you can also perform by going through the menus

Toolbox ■ The Toolbox contains controls that are used in your

over the Toolbox on the left side of the Start Page, the Toolbox

have a project open, the Toolbox will be empty. At this point yo

visual elements in Windows applications that possess a graphic

once a project is opened, the Toolbox will include buttons, labe

toolbars, and so on. I’ll explain these controls in greater detail in

Solution Explorer ■ This feature lists the files and component

project is open, it will be empty. You’ll learn more about Solutio

chapter.

Status bar ■ The status bar displays a wide variety of informati

the state of certain active operations. For instance, when you lo

N O T E
 The Microsoft Developer Network

(MSDN) is a set of online and

offline services designed to help

developers write applications

using Microsoft products and

technologies.

N O T E
If you don’t see Startup and other

settings in the Options dialog

box, ensure that you select the

Show All Settings check box

in the lower-left corner of the

Options dialog box.

T I P
 If you accidentally close the Start

Page and you want to display

it, you can always get it back by

clicking View, Start Page.

31

T I P
 For demos and samples, I recom-

mend you type all the source

code in the following examples

so that you can better understand

the concepts involved. However,

for longer source code listings,

you can also download the com-

pleted code samples (http://

www.microsoft.com/mspress/

companion/9780735625419).

N O T E
 By default in Visual Basic 2008

Express Edition when you click

OK, projects are created in a

temporary location. When you

save or close the project, files are

saved in Documents\Visual Studio

2008\Projects. (On Windows XP

and Windows Server 2003, you’ll

find them in My Documents\

Visual Studio 2008\Projects.)

You can change the default proj-

ect location by clicking Tools,

Options, Projects and Solutions

and finding the first text box

named Visual Studio Projects

Location. We’ll look into what

files are created and what their

content is in Chapter 5.
Chapter 3: Creating Your First Applications

message on your screen such as “Loading project c:\blabla\blabla.vbproj from your hard

drive.” When you’re building an application, you’ll see something like “Build started,” and

when the application has finished, you’ll see “Build succeeded” or “Build failed” depend-

ing on the success of the process.

Building the Projects

From this point on, you’ll focus on what you really came here to do: build some projects.

Let’s start with your first application—the console version of the application that adds two

numbers together.

Building a Console Application

We’ve been talking about what a console application can do and what it will look like, so

why don’t we build one? In this section, you’ll create a simple mathematic application.

TO BUILD A CONSOLE APPLICATION

1. If Visual Basic 2008 Express Edition is not running, start it by clicking Start, All Programs,

Microsoft Visual Basic 2008 Express Edition.

You can choose to start building your application either by clicking the New Project icon

on the toolbar, by selecting Create: Project from the Start Page, or by clicking File, New

Project on the menu bar.

2. In the New Project dialog box, select Console Application in the Templates section, and

type MyFirstConsoleApplication in the Name box. The New Project dialog box should

be similar to the one in Figure 3-5. Click OK to create the project.

ion: Build a Program Now!

rite the application’s

lorer. Shown on the right

ized view of your

l commands in the form

, the resource files (such

n Explorer.
32 Microsoft Visual Basic 2008 Express Edit

Figure 3-5
Creating a console application using the New Project dialog box

You should now see the IDE in an idle state waiting for you to w

code. Your screen should look like the one shown in Figure 3-6.

Getting to Know Solution Explorer

Before you write the code, you need to learn about Solution Exp

side of the screen in Figure 3-6, Solution Explorer provides an organ

projects and all the files associated with them, as well as some usefu

of a toolbar. You’ll find all the source code files, the project settings

as the application icon), the configuration files, and so on, in Solutio

T I P
 If you accidentally close Solution

Explorer, you can get it back by

clicking View, Solution Explorer.

33

T I P
 Note that the Start Page is still

available; it’s simply a separate

tab. You can go to any window by

clicking a specific tab or by press-

ing Ctrl+Tab.
Chapter 3: Creating Your First Applications

Figure 3-6
MyFirstConsoleApplication without the code

If you want more information about Solution Explorer, you can always do a search in the

Help system and product documentation. Before trying to perform a search, please read the

next section; you’ll learn a lot about all the information that is at your disposal.

ion: Build a Program Now!

e introduced to Help

ressing F1 from within

st time you press F1 or

 dialog box, as shown in

ou can choose online

e Help at all. Think

DSL, or satellite) Internet

otherwise, choose online

 information.
34 Microsoft Visual Basic 2008 Express Edit

Getting Help: Microsoft Visual Studio 2008
Express Edition Documentation

If you want to read more about Solution Explorer, you need to b

and the documentation system. You access the documentation by p

Visual Basic 2008 Express Edition or by using the Help menu. The fir

use the Help menu, you’ll be greeted with the Online Help Settings

Figure 3-7.

Figure 3-7
Online Help Settings dialog box

This dialog box prompts you to choose a primary Help source; y

Help as a primary source, local Help as a primary source, or no onlin

about your options carefully. If you don’t have a broadband (cable,

connection, I suggest you choose local Help as the primary source;

Help as your primary source since it is the best source for the latest

35
Chapter 3: Creating Your First Applications

Once you’ve made your selection, you’ll see the documentation’s graphical interface, as

shown in Figure 3-8.

Figure 3-8
Microsoft Visual Studio 2008 Express Edition documentation

The toolbar at the top of the window includes several interesting elements that will

help you find exactly what you need. Figure 3-9 shows the most important buttons on the

toolbar.

tion: Build a Program Now!

plorer. Click the Search

h query (in this example,

button. The Help results

e product installation)

llation).

rmation from MSDN

f Web sites based on

are researched, click

items at the left. Fig-

b sites on the right that

ht expand to show more

e Help system. On the

presents information. You

guage of your operating

nguages supported by

mands used through-

 is Ctrl+C) or assign new
36 Microsoft Visual Basic 2008 Express Edi

Figure 3-9
Important buttons on the toolbar

For example, let’s say you want to learn more about Solution Ex

button on the toolbar, and the search page opens. Enter your searc

type Solution Explorer), and either press Enter or click the Search

come from four sources:

Local Help ■ This source is fed by the MSDN Library (part of th

and is installed on your hard disk (if you selected it during insta

MSDN Online ■ This source contains the most up-to-date info

Online.

Codezone Community ■ The Codezone Community is a set o

Microsoft developer products. To see a list of all Web sites that

Tools, Options, and then select Online under Help in the list of

ure 3-10 shows the dialog box you will see. Notice the list of We

are part of the Codezone Community. In the future, this list mig

sites to provide even better coverage of the community.

In the same dialog box, you can customize settings related to th

General tab, you can set up how the Help system retrieves and

can set up the international settings to get local Help in the lan

system, if available, and get online Help in a predefined list of la

MSDN. You can also view the keyboard shortcut for menu com

out the product (for example, notice that the shortcut for Copy

shortcuts to commands that might not have one already.

37

N O T E
 MVPs stands for Most Valuable

Professionals. MVPs are profes-

sionals who are not Microsoft

employees but are recognized

by Microsoft as experts in their

fields.
Chapter 3: Creating Your First Applications

Figure 3-10
Options dialog box with the online settings, including the Codezone Community Web sites

Questions ■ This type of query searches the MSDN Online forums (http://forums.

microsoft.com/msdn/). These forums are hosted by Microsoft and are an excellent

source of information because they have questions and answers on topics asked by

other programmers of all levels and experience. There’s a good chance that somebody

has already had the same problem or the same question as you, so your chances of find-

ing an answer to your problem in the MSDN Online forums are good. Furthermore, you

can have confidence in the answers you get because answers on the MSDN forums are

often validated by Microsoft employees or MVPs. A check mark in a green circle tells you

which answer has been validated as correct.

Coding Your Console Application

Now that you know how to get help if needed, you are ready to code your first console

application.

ition: Build a Program Now!

 the line numbers):

y clicking the Save button.

on to save all the modified

ild menu, and then click

 message “Build suc-

ure 3-11). If something

re 3-12). If you typed the

he completed code

35625419) instead of
38 Microsoft Visual Basic 2008 Express Ed

TO CODE A CONSOLE APPLICATION

1. To begin, type the following code in your code window (minus

 1 Module Module1
 2 ‘ This application will take two numbers and display the sum
 3 Sub Main()
 4 ‘ Declaring two integer variables that will hold the 2 parts
 5 ‘ of the sum and one integer variable to hold the sum
 6 Dim number1, number2, sum As Integer
 7
 8 ‘ Assigning two values to the integer variables
 9 number1 = 10
10 number2 = 5
11 ‘ Adding the two integers and storing the result in the sum variable
12 sum = number1 + number2
13
14 ‘ Displaying a string with the 2 numbers and the result.
15 Console.WriteLine(“The sum of “ & number1.ToString() & “ and “ &
 number2.ToString() & “ is “ + sum.ToString())
16 End Sub
17 End Module

2. Now that the code is in the window, you can save your work b

This will save the current file. Or you can click the Save All butt

files in the project.

3. Now it is time to build (or compile) the application. Click the Bu

Build MyFirstConsoleApplication.

If you typed the code exactly as it appears, you should see the

ceeded” in the status bar at the bottom of the window (see Fig

went wrong, you’ll see errors in the Error List (as shown in Figu

code and have errors, try copying and pasting the code from t

samples (http://www.microsoft.com/mspress/companion/97807

typing it. Then build the code again.

I M P O R TA N T
 Comments in the source code

start with a single apostrophe (‘).

Developers can use comments

to explain the operations and

purpose of their code so that it is

easy to maintain and understand.

(It’s not rare to see developers

staring at their own source code a

few months after it was written.)

Use comments to explain pieces

of code that are more complex or

that you think are more impor-

tant; do not comment pieces of

code that are obvious.

T I P
 You can also save your proj-

ect by pressing Ctrl+S to save

the current file or by pressing

Ctrl+Shift+S to save all the files.

Figure 3-11
Status bar with “Build succeeded”
message

39

Learning to Read Code

I will explain a lot of the source

code in this book, but after

explaining some topics more

than once (or twice), I’ll usually

explain only the new material.

To learn more about the code,

you can read the helpful com-

ments I’ve included in the appli-

cation source code.

In addition, at the end of

each chapter, I will include

hyperlinks that point to articles,

videos, and white papers, and

I will often include keywords to

help you search for more infor-

mation in the online Help. That

should help you progress in

learning the language and .NET

in general. Although this book

is showing you what you can do

with the product and the steps

to get there, it’s not a book on

object-oriented programming

(OOP) or the Visual Basic lan-

guage itself. You can expand

your knowledge even further by

reading the code comments and

investigating the links and key-

words presented.
Chapter 3: Creating Your First Applications

Figure 3-12
Error List with errors

In Chapter 7, “Fixing the Broken Blocks,” you’ll learn about all the debugging techniques

you can use when you get an error.

4. To see the execution results of your application, click the Start Debugging button in the

main toolbar (or hit F5).

Wow! That was fast, wasn’t it? You probably saw a command window for a few seconds,

and then it disappeared. It didn’t leave you a lot of time to see whether your application

displayed the expected output. In the next section, you’ll look at a new way of running your

application to solve this problem. To do this, you’ll need to customize the IDE.

Customizing the IDE

You can easily customize the IDE to fit your needs. Here, you want to execute your appli-

cation and then have the application pause automatically at the end of the last instruction to

give you as much time as you need to view the output. You’ll do this by adding an icon and

its attached command to the main toolbar and to the Debug menu. The name of the com-

mand you’ll add to the IDE is Start Without Debugging.

TO CUSTOMIZE THE IDE

1. Click the Tools menu, and then click Customize.

2. In the Customize dialog box, select the Commands tab.

on: Build a Program Now!

ug.

ugging.

at, drag Start Without

enu. (Figure 3-14 shows

except this time drop

tton. (Figure 3-15 shows

e in the Customize

 3-14
 and after customizing the
 menu with the Start Without
ging command

 3-15
 and after customizing the tool-
th the Start Without Debugging
and
40 Microsoft Visual Basic 2008 Express Editi

3. In the Categories area on the left side of the window, select Deb

4. Scroll down in the Commands area, and select Start Without Deb

Your screen should now look like the one in Figure 3-13.

Now you must add the command to the Debug menu. To do th

Debugging from the Commands area, and drop it on the Debug m

a “before” and “after” view of this process.) Now repeat these steps

the command on the toolbar to the right of the Start Debugging bu

a “before” and “after” look at the toolbar.) When finished, click Clos

dialog box.

Figure 3-13
Customize dialog box with Start Without Debugging selected

N O T E
 Both Figure 3-14 and Figure 3-15

have the “before” version toward

the left and the “after” version

toward the right, overlapping the

“before” version.

Figure
Before
Debug
Debug

Figure
Before
bar wi
comm

41
Chapter 3: Creating Your First Applications

To make sure the customization worked, click the new menu item in the Debug menu or

the new icon on the toolbar. (Or, press the keyboard shortcut Ctrl+F5.) You should see a com-

mand prompt window with the expected output, which is the string “The sum of 10 and 5 is

15.” You should also see the message “Press any key to continue,” as shown in Figure 3-16.

Figure 3-16
Command prompt window with the expected result and a message indicating a paused execution

 As you probably realize by now, the effect of the new command is to display the “Press

any key to continue” message and pause the execution after the last instruction executes.

Press any key to close the command prompt window and return to the IDE. When you’re

done, you can close the project by clicking File, Close Project. You’ll be prompted to save or

discard your changes. Click Save, and then if the name and location are fine, click Save again

in the Save Project dialog box.

Creating a Windows Application

You just built a console application. The next step is to develop the same application but

as a Windows application. What you will develop is a real Windows application, but it won’t

do much. You’ll create a fully functional Windows application in Chapter 5.

ition: Build a Program Now!

ct dialog box. Open it

section, and type MyFirst-

e in Figure 3-17, and

different for the Windows

ess. You should see the
42 Microsoft Visual Basic 2008 Express Ed

TO BUILD A WINDOWS APPLICATION

1. When creating the console application, you saw the New Proje

again by clicking File, New Project.

2. This time, select Windows Forms Application in the Templates

WindowsApplication. Make sure your screen looks like the on

then click OK.

Figure 3-17
Creating a Windows application using the New Project dialog box

You’ll immediately see that the result of this operation is quite

application process than it was for the console application proc

Windows Forms Designer, as displayed in Figure 3-18.

43

re 3-19
ows Forms Designer surface with a
n control
Chapter 3: Creating Your First Applications

Figure 3-18
IDE with the Windows Forms Designer and an empty form

3. On the left side of the IDE, move your mouse over the Toolbox to open it. Click the

plus (+) sign next to Common Controls. You’ll see a list of form controls that are

common in a Windows application.

4. Drag the Button control to the designer surface. Your form should look like the one in

Figure 3-19.

You now have a full and valid Windows application without having written a single

line of code. The application doesn’t do anything very useful at this point, but it

works! You can easily verify this by running the application. Just hit F5 to see for
Figu
Wind
Butto

ition: Build a Program Now!

E environment for pro-

al Studio writes a lot of

ty that’s taking place

e finished, click the Close

 familiar source code win-

y the code between Sub

previously and add it to

n more about this method

Creating Your Own Web
44 Microsoft Visual Basic 2008 Express Ed

yourself. This is part of the magic of using the Visual Studio ID

gramming instead of using a text editor such as Notepad. Visu

code for you, and in Chapter 5, we’ll look at some of the activi

behind the scenes to make it appear like magic. When you hav

button on the form to return to the IDE.

5. Double-click the button on the designer surface. You’ll get the

dow but with different content this time. For now, type or cop

Main() and End Sub from the console application you created

the Button1_Click method, as shown in Figure 3-20. (You’ll lear

and the whole process behind the double-click in Chapter 4, “

Browser in Less Than Five Minutes.”)

Figure 3-20
Button-click method with the code from our previous example

45

Keywords and Links to
More Information

If you want to read more about

some topics covered in this

chapter, simply create a search

query by pressing F1 and then

type the following keywords:

declaring variables and string

concatenation.

The videos from MSDN

are another good source of

information. These videos were

specifically created to cover

Visual Basic 2005 Express

Edition, but they are for the

most part still applicable to

creating your first applica-

tions using the 2008 version.

You can find the video for

Lesson 1, which covers get-

ting started with Visual Basic

Express Edition, at the follow-

ing location: http://msdn2.

microsoft.com/en-us/beginner/

bb308737.aspx.
Chapter 3: Creating Your First Applications

6. In the source code, find the words Console.WriteLine, and replace them with the words

MessageBox.Show. Then build and execute the application by hitting F5.

7. When the form opens, click the button, and you’ll see the result of your application: a

message box with the same string you saw in the console application. It should look like

Figure 3-21. Click OK in the message box, and then quit the program by clicking the

Close button on the main form.

Figure 3-21
Output of MyFirstWindowsApplication

Congratulations! You just created your first two applications: a console application and a

Windows application.

tion: Build a Program Now!

 you build on the skills

ifferences between con-

 started Visual Basic 2008

ts. In addition, you cre-

d a Windows application.

olution Explorer is as well

 system.

imple Web browser.
46 Microsoft Visual Basic 2008 Express Edi

In Summary…

In this chapter, you learned some key information that will help

you started developing in the previous chapters. You learned the d

sole applications, Windows applications, and WPF applications. You

Express Edition, explored the IDE, and learned its major componen

ated two versions of the same application: a console application an

While learning about console applications, you also learned what S

as how to search and use the product documentation and the Help

In the next chapter, you’ll build on this knowledge and write a s

47

creating simple applications in

u’ll build a more complicated

ter 6, “Modifying Your Web

asic framework of the applica-

o learn new features and then

 to build your own basic Web

tes or less!
4
What Is a Project?, 48

What Is the Design
Layout?, 49

Putting It All Together, 56

Chapter 4
Creating Your Own
Web Browser in Less
Than Five Minutes

Now that you’ve gotten a little experience

Microsoft Visual Basic 2008 Express Edition, yo

application in this chapter and finish it in Chap

Browser.” In this chapter, you’ll start with the b

tion; in the next two chapters, you’ll continue t

use them to enhance your project.

Specifically, in this chapter you’ll learn how

browser, and you’ll be able to do it in five minu

ition: Build a Program Now!

rce code. I’ll now take a

ins. A project is a container

d resources. It also stores

whole, such as the loca-

ion information, and many

r instance, a project stores

e user experience. Users

ort level and personal

s in Windows Internet

gs, which toolbars are

 typical use of application

ser customizations from

ttings stored in the

. In the final chapter

e user’s settings and

es the project’s name.

our application is stored

f your application. A

, logical hierarchical struc-

eation of a namespace

et’s look at an example to

ows Forms class

 AdventureWorks and

ualified name of a class
48 Microsoft Visual Basic 2008 Express Ed

In the previous chapter, you created a project to hold your sou

moment to explain what a project is and what information it conta

for all the items in your application, such as forms, source code, an

important configuration data that belongs to the application as a

tion of the executable (that is, binaries) on your hard disk, the vers

more settings that affect the characteristics of your application. Fo

programmer-defined application settings that are important for th

love to customize their software environment to reflect their comf

styles, for example. You’ve probably set up specific user preference

Explorer, such as your home page address, your home page settin

displayed, whether your toolbars are locked in size, and so forth. A

settings in a project is to make sure the application can preserve u

one execution to another.

In Chapter 6, you’ll learn about some of the most important se

 project configuration file and how to use them in your application

of this book, you will use programmatic techniques to preserve th

 customizations.

The name you choose when you create your application becom

It also becomes the default folder name on your hard disk where y

when you save it, and this name becomes the default namespace o

namespace is used to organize the classes in a program in a single

ture. It does the same for any other types you might define. The cr

also helps prevent naming collisions. What is a naming collision? L

illustrate this concept.

Suppose a company called AdventureWorks wrote a new Wind

named ANewForm. The company would create a namespace called

put its ANewForm class in it to uniquely name the class. The fully q

What Is a Project?

49
Chapter 4: Creating Your Own Web Browser in Less Than Five Minutes

is always composed of the namespace followed by a dot and then the name of the class or

classes. Therefore, AdventureWorks’s unique class would be AdventureWorks.ANewForm.

Now let’s suppose you are creating a new project using Visual Studio and decide to

name your project MyLibrary. Visual Studio would then create for you a namespace called

MyLibrary. Suppose you then define a new class and name it ANewForm. You might not

be aware that a company called AdventureWorks also called its new class using the same

name. Even though AdventureWorks might be performing completely different tasks with

its class, a problem could arise because the two classes are named the same.

Now suppose you’re trying to use both classes called ANewForm in your new applica-

tion. If you simply use ANewForm, the compiler will not be able to determine which ANew-

Form class you want to use—the one from your library or the one from the AdventureWorks

library; this is a naming collision. By prefixing the class name with the namespace name,

you tell the compiler exactly which class you want to use (AdventureWorks.ANewForm or

MyLibrary.ANewForm).

What Is the Design Layout?

You will soon create a new design layout in the form designer. In doing so, you’ll be cre-

ating what the application contains and how its content is presented when the user executes

the application.

To accomplish this phase of a project, you typically do not need to type a great deal of

code; as explained later in this chapter, Visual Studio takes care of this code for you. You have

to worry mostly about how your application looks. When you’re done designing all the visual

aspects to your liking, your next task usually involves attaching the source code to your

visual layout so that your application reacts to and acts upon the user’s input.

In this chapter, you will complete the basic layout. You will learn more advanced layout

techniques in the following chapters. Let’s start the Web browser project now.

tion: Build a Program Now!

rams, and then Microsoft

the techniques shown in

enu or the New Project

r named Form1. Click the

ht of the IDE, as shown in
50 Microsoft Visual Basic 2008 Express Edi

To Create a Simple Web Browser

1. Start Visual Basic 2008 Express Edition by clicking Start, All Prog

Visual Basic 2008 Express Edition.

2. Create a new Windows Forms Application project using any of

the previous chapters; for instance, you can use either the File m

icon in the toolbar. Name the new application MyOwnBrowser.

3. On the design surface, you’ll see the empty form with a title ba

title bar once. Look at the Properties window on the bottom rig

Figure 4-1.

Figure 4-1
Properties window for the MyOwnBrowser application form control

51

I M P O R TA N T
 Some properties have a plus

(+) sign beside them, which

means it’s a tree view property.

Whenever you click the +, you’ll

expand this property to display

the property’s attributes, which

you will then be able to set.

Whenever you are asked to enter

values for properties that are in a

tree view, I will use the notation

structure Size:Width, which refers

to the Size property and the

Width attribute.

Value

My Own Browser

640

480
Chapter 4: Creating Your Own Web Browser in Less Than Five Minutes

We’ll be using most of the properties you see listed here. Right now what is important for

you to understand is that most of these properties influence how the control you have

selected behaves or what it looks like when you execute your application.

For all the samples in this book, I suggest you sort the Properties window in ascend-

ing alphabetical order; it will be much easier to find properties that I reference in the

examples. To sort the properties in ascending alphabetical order, click the Alphabetical

button in the Properties window toolbar. The other option is to arrange the properties

by categories, but this might slow you down as you progress through this book.

Whenever you select a property, you’ll see a brief description of its usage at the bot-

tom of the Properties window. Refer to Figure 4-1 as an example. In this case, the Text

property is selected, and at the bottom of the Properties window, you can see a succinct

message describing the function of the Text property.

As mentioned in Chapter 3, “Creating Your First Applications,” my best advice for

learning this software is to try, try, and try again. Visual Basic 2008 Express Edition comes

with a variety of tools and therefore many possibilities. You will learn to use most of these

tools by performing the exercises in this book, but it’s impossible to learn all the varia-

tions and possibilities if you don’t do some exploring on your own. With that in mind, to

understand the effect of changing a particular property, try all the possible values. Each

time you modify a property, build and verify the execution. However, don’t make more

than one change at a time. If you do, it will be difficult for you to know which one of your

changes actually triggered a visual modification. By exploring possibilities one at a time,

you’ll be able to see the effect of your changes immediately.

4. Make sure you have selected the form control named Form1

as directed in step 3, and then modify the properties using the

values in Table 4-1. The property name to modify is located in

the left column, and the value to which to set the property is

located in the right column. You may have already completed

this step, but to facilitate your data entry, verify that you have

sorted the properties in ascending alphabetical order.

Property

Text

Size:Width

Size:Height

Table 4-1
Form Properties to Change

ition: Build a Program Now!

r application: a text box

l to navigate to the Web

nt will be displayed.

owser control is located in

 Common Controls section.

cause you don’t want

ngle, as shown in the left

 particular example, the

ntainer (the form). Click

pace. To do this, click any of

ntrol. Then go to the Prop-

ed in Table 4-2. Modify the

 4.
52 Microsoft Visual Basic 2008 Express Ed

You’ll now add three Windows Forms controls to your browse

control in which to enter the destination URL, a button contro

page, and a WebBrowser control in which the Web page conte

5. Drag a WebBrowser control to the designer surface. The WebBr

the Toolbox on the left side of the IDE; it’s the last control in the

By default, this control will fill the designer surface entirely. Be

that behavior for this particular application, click the black tria

margin, which will produce the content of a Smart Tag. In this

Smart Tag will help you undock the control from its parent co

the Smart Tag, and select Undock in the Parent Container.

6. Expand the control so it occupies almost the entire designer s

the control handles to change its size.

7. Select the WebBrowser control by clicking anywhere on the co

erties window, and modify the values for all the properties list

values in the same way you modified the form controls in step

Property Value

(Name) myBrowser

Size:Width 607

Size:Height 385

Location:X 12

Location:Y 12

Table 4-2
WebBrowser Control Properties to Change

T I P
 To add a control to a form, you

need to perform a drag-and-drop

operation. This means you’ll

move your mouse pointer to the

Toolbox, drag the desired control

to the designer surface, and drop

the control onto it.

53

Figure 4-2
MyOwnBrowser application
Chapter 4: Creating Your Own Web Browser in Less Than Five Minutes

8. Drag a text box control and a button control

from the Toolbox’s Common Controls section so

that your form looks like Figure 4-2. Change the

properties of the controls as you did with the

WebBrowser control in step 7. Select one control at

a time, and modify its properties with the data in

Table 4-3.

9. At this point, you have a complete Web browser–

congratulations! You can compile and execute your

application by pressing F5.

If you followed the previous steps exactly, your

application should now be running. Because we didn’t

code any functionality, entering a URL and hitting the

GO button will not do anything.

Control Property Value

Text box (Name) txtURL

Text box Location:X 12

Text box Location:Y 411

Text box Size:Width 526

Text box Size:Height 20

Button (Name) btnGo

Button Location:X 544

Button Location:X 411

Button Text GO

Table 4-3
Controls, Properties, and Values

ion: Build a Program Now!

they will perform. I will

 itself is not a useful

 wires carrying electricity.

it, you need to attach, or

 the event of clicking the

he term wire or wiring in

line of code you’ll add

P concepts previously

xpress Edition.”

created instances of the

d the WebBrowser con-

bBrowser that you then

he Navigate method is

rowser class to navigate

. The URL is passed as

arameter, is used to pass

stance of the System.

 To retrieve the content

that control. A property

ss without accessing the

le, Microsoft) can modify

er with the implementa-

is process to a person

sion work to drive the

 to know how it’s imple-

y things are happening

 don’t need to create any

l Studio is doing all of
54 Microsoft Visual Basic 2008 Express Edit

You first have to “wire up” the controls to the functionality that

use an analogy to explain this fundamental concept. A light bulb by

piece of hardware. To obtain light from it, you need to connect two

Similar to what an electrician would do to create this electrical circu

wire, the control and the action together by writing code to handle

GO button. Keep this analogy in mind when you see references to t

this book.

Before we wire up the click action to the button, I’ll explain the

in the following instructions, and I’ll explain how it relates to the OO

introduced in Chapter 1, “Introducing Microsoft Visual Basic 2008 E

When you dropped the controls onto the designer surface, you

class represented by those controls. For example, when you droppe

trol, you created an instance of the class System.Windows.Forms.We

named myBrowser. The WebBrowser class has many methods, and t

the one you’ll use. As its name implies, this method allows the WebB

to a URL. A method in Visual Basic can be a subroutine or a function

an argument to the Navigate method. An argument, also called a p

data to a method.

The argument in this case is the text the user will enter in the in

Windows.Forms.TextBox class that you appropriately named txtURL.

of the text box control named txtURL, you use the Text property of

enables you to set or retrieve the content of a data member in a cla

data member directly. That way, the provider of the class (for examp

the implementation of the Text property without concerning the us

tion details. In OOP, this is called encapsulation. You can compare th

driving a car: you don’t need to know how the engine and transmis

car. Another good example is the Navigate method. You don’t need

mented; you simply want it to do its job. As mentioned earlier, man

when you design a form with Visual Studio. You have seen that you

of the classes or instances representing your controls because Visua

that for you!

55

N O T E
 If you try to type some code and

it doesn’t work, your applica-

tion is probably still running. If

you don’t close the application

and you return to Visual Basic,

you won’t be able to modify the

source code. A good way to verify

that you have closed and termi-

nated the application is to look in

the Visual Basic Express Edition

title bar. If you see the name of

your application followed by the

word (running), this means your

application is still active and you

won’t be able to add code. If

you try to add code, the status

bar will report that you are in

read-only mode with the follow-

ing message: “Cannot currently

modify this text in the editor. It is

in read-only.”
Chapter 4: Creating Your Own Web Browser in Less Than Five Minutes

TO WIRE THE CLICK ACTION TO A BUTTON

1. Close the running application, and return to the IDE. Double-click the button control.

You’ll see the code window, as shown in Figure 4-3.

Figure 4-3
Code window for the btnGo_Click event

If you terminated the execution of your application properly, you should see the source

code window with the btnGo_Click event template. When you double-clicked the button

control, you signaled Visual Studio that you wanted to wire the click action to the button

control. Typically, each control can trigger multiple events depending on which behavior

you want to intercept with your code. Each control has a default event that becomes

available to the programmer for coding by double-clicking the control on the designer

surface. In this case, Visual Studio created the Click event template so that you could

enter the following code.

2. Type the following code at the cursor:

myBrowser.Navigate(txtURL.Text)

3. Press F5 to compile and execute the application. If you named your controls correctly

in step 8 in the previous exercise and entered the line of code as shown in step 2 of this

exercise, you should now have your own Web browser application that takes you to a

Web page when you enter a URL. Of course, you won’t have all the bells and whistles of

Internet Explorer, but be patient—we’re getting there. Try going to your favorite URLs

to see whether your browser is working as expected. For instance, I went to http://www.

microsoft.com, and it worked just fine! You can see the result in Figure 4-4.

tion: Build a Program Now!

face, you’re actually

ntrol in the Properties

t created—which is

 fact, this is why you want

later programmatically.

n you dropped controls

 the background, we
56 Microsoft Visual Basic 2008 Express Edi

Figure 4-4
MyOwnBrowser showing the Microsoft.com Web site

You’ve just seen that when you drag a control to the design sur

creating an object of that control class. When you’re naming the co

window, you’re actually assigning a name to the variable you’ve jus

exactly what you did for the three controls used in your browser. In

to give your controls meaningful names so that you can use them

As you now know, a great deal of activity was taking place whe

on the designer surface. To help you understand what took place in

Putting It All Together

I M P O R TA N T
 Before moving on, I invite you to

look at a video from the MSDN

Web site that talks about object-

oriented programming. You’ve

read a good introduction to

OOP both in this chapter and in

Chapter 1. To understand the con-

cept from another angle, navigate

to http://msdn2.microsoft.com/

en-us/beginner/bb308752.aspx,

and view Lesson 6, Parts 1 and 2.

57

M O R E I N F O
 Philosophies differ when it

comes to naming the variable

that represents controls on the

design surface. In this book, I’ll

use up to three letters to describe

and identify the control type

by looking at its name, such as

btn for a button control. The

variable name then becomes

btnGo. I will introduce the list

when I talk about common con-

trols in Chapter 5, “Using Rapid

Application Development Tools

with Visual Basic 2008.”

Links to More
Information

Some good sources of informa-

tion are the videos from MSDN

that were specifically created to

cover Visual Basic 2005 Express

Edition but that are still appli-

cable. The videos for Lessons 2

and 7 cover some of the topics

you have just learned and will

provide you with another point

of view. You can find the videos

for Lessons 2 and 7 by typing

the following hyperlink: http://

msdn2.microsoft.com/en-us/

beginner/bb308734.aspx.
Chapter 4: Creating Your Own Web Browser in Less Than Five Minutes

talked about important OOP concepts behind the line of code you added to respond to the

click event.

Now that you’ve run the application, here is a list of questions you may have:

What happens if I put nothing in the text box and hit Enter? ■

What happens if I enter an invalid URL? ■

What happens if I enter anything I feel like? ■

My answer to you is simply, “Try it. Try it now.” The real deal is that your Web browser

will actually behave like any other Web browser and will navigate to whatever URL is typed

in the text box. If you don’t type anything, clicking the GO button will have no effect. If you

type something that isn’t a URL, the browser control will come back with a Page Not Found

or Code 404 page.

Now is your time to experiment. Remember this book’s rule: try, try, try. Play with it.

Change some of the properties, and see the results at run time. Although we haven’t used

many features yet, you’ll add more in Chapter 6. This project is far from over! By adding new

features, you’ll arrive at a point where your application will start to look much more familiar.

tion: Build a Program Now!

hat will execute when the

ing only one line of code.

 the Navigate method of

assed in as an argument

as passed in using the

ly working just by tweak-

 I call productivity.

re about the major

roductive at developing

es, code snippets, Smart
58 Microsoft Visual Basic 2008 Express Edi

In Summary…

In this chapter, you learned how to build a Web browser.

You added more than one control to the designer surface. ■

You set properties in the Properties window. ■

You wired an event to a control and learned how to add code t ■

event is triggered.

With this example, you saw many OOP concepts in action by us

You added the code to respond to the button click event by calling

your Web browser object. Your Web browser navigated to a URL p

to the Navigate method. The argument for the Navigate method w

text box control’s Text property. Everything was completed and ful

ing some properties and adding only one line of code! That’s what

In the next chapter, you’ll continue this process by learning mo

features of Visual Basic 2008 Express Edition. You’ll become more p

applications by learning about features such as IntelliSense, snap lin

Tags, the My namespace, and much more.

59

ser in Less Than Five Min-

ser, and in Chapter 6, “Modi-

bilities. But before you do

008 features that will help

ledge and skills. In this

l rapid application develop-

ss Edition.

 in every

to use these

e other edi-

itch and be
5
Snapping and Aligning
Controls Using Snap
Lines, 60

Using IntelliSense—Your
New Best Friend!, 62

Exploring Real-Time
Error Detection and
Correction, 68

Oh, My...My Is Great, 70

Renaming, 72

Exploring Common
Windows Controls, 75

What Happens When an
Event Is Triggered?, 78

Chapter 5
Using Rapid Application
Development Tools with
Visual Basic 2008

In Chapter 4, “Creating Your Own Web Brow

utes,” you started building your own Web brow

fying Your Web Browser,” you’ll add to its capa

that, I’ll introduce some Microsoft Visual Basic 2

you develop your Windows programming know

chapter, we’ll look into some of the more usefu

ment (RAD) features of Visual Basic 2008 Expre

N O T E
 You can find all the RAD features described in this chapter

edition of Visual Studio 2008. So if you already know how

features in Express Edition and decide to explore any of th

tions of Visual Studio 2008, you’ll find it much easier to sw

productive.

ition: Build a Program Now!

ays had problems working

 trying to get the align-

 always had to go to the

eir x and y coordinates,

e philosophies the Visual

t was to make sure you

 accomplish a simple task.

 designer; one of these is

e designer surface. Let’s

S

grams, Microsoft Visual

ication project by using

ther the File menu or the

stProject.

e filename Form1.vb in

olbox, drag three text box

appears on either the

ent. When the labels are

rs to the left of the label

trol and another control
60 Microsoft Visual Basic 2008 Express Ed

Not being a very skilled user interface designer myself, I’ve alw

on a program with many controls to align. Even more difficult was

ment right the first time I dropped the controls onto the form. I’ve

Properties window and align the controls manually by entering th

which slows down the development process quite a bit! One of th

Basic 2008 team had in mind when creating this awesome produc

didn’t have to perform multiple steps at several different places to

And they succeeded with a lot of important features built into the

the snap lines feature with which you can easily align objects on th

do an exercise so you can see the snap lines feature in action.

TO CREATE A NEW WINDOWS FORM USING SNAP LINE

1. Start Visual Basic 2008 Express Edition by clicking Start, All Pro

Basic 2008 Express Edition. Create a new Windows Forms Appl

any of the techniques shown in the previous chapters (using ei

New Project icon in the toolbar). Name the new application Te

2. You should see the designer surface. If you don’t, right-click th

Solution Explorer, and select View Designer. Then, using the To

controls and three label controls to the design surface.

3. Stack the label controls vertically. A thin blue line (a snap line)

right side or the left side of the labels to help guide the alignm

aligned correctly, release the label control.

As shown in Figure 5-1, a small blue horizontal line also appea

control. This line represents the minimum space between a con

or between a control and its container.

Snapping and Aligning Controls Using Snap Lines

T I P
 When you have many controls to

drop on the designer surface, you

can save some time by “pinning”

down the Toolbox so that it stays

open. To turn off the AutoHide

feature so that the Toolbox stays

open, click the Auto Hide button

(with the pushpin icon) on top

of the Toolbox. To turn on the

AutoHide feature, click the but-

ton again.

Figure 5-1
Snap lines in action with two label
controls

61
Chapter 5: Using Rapid Application Development Tools with Visual Basic 2008

4. After aligning the labels vertically, do the same with the text

boxes immediately to the right of each label. The designer

surface should look like the one shown in Figure 5-2.

5. Notice that the labels are aligned with the bottoms of the text

box controls. For a cleaner appearance, the labels should align

with any text that will be entered in the text boxes. To align the

labels correctly, move each label until you see a horizontal

fuchsia line instead of a blue line, as shown in Figure 5-3. In

Figure 5-4, Label1 and Label2 have been properly aligned with

the baseline of the corresponding text box contents, but

Label3 is still aligned with the bottom of the text box.

Figure 5-3
Example of alignment with the common text
baseline

Figure 5-4
Runtime execution of an alignment prob-
lem. The bottom label is aligned with the
bottom of the text box but not its content.

Figure 5-2
All the controls are now
aligned

I M P O R TA N T
 Do not close the test project;

you’ll need it for the sections that

follow. If you close the test proj-

ect and Visual Basic 2008 Express

Edition and then re-open them

later, you might lose the current

view and your form, and code

might not show up automatically.

If you do happen to close the test

form, click the View Code button

on the Solution Explorer toolbar

to view the code for the selected

form, or click the View Designer

button to open the designer for

the selected form. Alternatively,

you can right-click the form file-

name, in this case Form1.vb, and

then select View Code to view the

source code or View Designer to

open the design surface.

tion: Build a Program Now!

inner and experienced

s within the code editor

ediate code syntax help

 For example, if you’re

minute), you’ll get access

 already experienced

ing that’s what you were

ven more. In fact, it has

. IntelliSense Everywhere

the number of keystrokes

ere is.

g new kinds of helper

e keywords. For example,

ywords are now included

 the code editor. As soon

e, Dim. IntelliSense was

ping and present the

n in this figure is that it

 of a tooltip in the IDE.
62 Microsoft Visual Basic 2008 Express Edi

IntelliSense is one of the greatest tools developed for both beg

programmers. This feature provides contextual language reference

and can even complete typing for you. This means you can get imm

specific to the code you’re writing without leaving the code editor.

inside a form and you ask IntelliSense for help (you’ll see how in a

to code constructs that make sense for that particular form. You’ve

IntelliSense while doing the previous examples without really know

using. With Visual Basic 2008, the team has improved IntelliSense e

improved so much that it has a new name: IntelliSense Everywhere

improves productivity compared to Visual Basic 2005 by reducing

you have to type. Now let’s see in detail what IntelliSense Everywh

Using IntelliSense as You Go

In Visual Basic 2008, IntelliSense helps you as you type by addin

functionality. For instance, it now contains the Visual Basic languag

keywords such as Dim and As and all other Visual Basic reserved ke

in IntelliSense.

Figure 5-5 shows an example from the project currently open in

as I typed Di, IntelliSense reduced the number of possibilities to on

able to detect the context in which I was working when I started ty

most logical choice. Another great new feature of IntelliSense show

provides you with help on the selected keyword or type in the form

Figure 5-5
IntelliSense detects the most logical choice based on the context.

Using IntelliSense—Your New Best Friend!

N O T E
 As a beginner, one of the tough-

est aspects of programming to

learn is the syntax, including

knowing when you can use a par-

ticular keyword, and so on. Well,

IntelliSense in Visual Basic 2008

Express Edition really gives you a

hand. It’s smart enough to bring

you only those suggestions that

you can use in the context you

are in and therefore removes a

lot of potential errors for using a

construct in the wrong place.

63

T I P
 As you code bigger projects, it

will be common for IntelliSense

to hide pieces of code that

you need to see. In earlier ver-

sions of Visual Basic, the code

would be hidden underneath the

IntelliSense window, and if you

wanted to use the information,

you had to remove the window

by moving the cursor or the

mouse, then reading, and then

doing it again. Now you can

simply hold down the Ctrl key,

and the IntelliSense window will

become transparent, allowing

you to see underneath.

igure 5-7
 user-defined variable is
vailable in IntelliSense.
Chapter 5: Using Rapid Application Development Tools with Visual Basic 2008

Along the same lines, Figure 5-6 shows how IntelliSense narrows down the number of

choices based on the context and the libraries available. The figure shows that when I typed

the letters Open, IntelliSense narrowed down my logical choices. I had to type only five

letters, OpenF, to find the OpenFileDialog class out of hundreds of possible types in the

libraries. This greatly helps reduce the number of keystrokes and keeps errors to a minimum.

Figure 5-6
IntelliSense narrows down the options based on the context.

Another nice feature is that you even get help on your own variables in IntelliSense, as

shown in Figure 5-7. As you’ll see throughout this book, IntelliSense is smart and helpful but

not intrusive.

Using IntelliSense Filtering: Removing the “Uncommon”

You might have also noticed that when the IntelliSense window appears, you have two

tabs at the bottom: Common and All. These are called sticky tabs because they reset the

default view when you click them. These tabs are also part of the feature called IntelliSense

Filtering. With IntelliSense Filtering, you can adjust the level of detail that IntelliSense sup-

plies in the code editor. When you select the Common tab, IntelliSense filters out most

uncommon and rarely used options, bringing you only the most common options based on

two factors: the most plausible choices for the context or the one used most frequently in

the application.

F
A
a

ion: Build a Program Now!

g .NET objects or your

 involving the variable

h represented the first

.—I received the list of

st of all relevant compo-

 down to the item I

r. Finally, I pressed the

in the code editor. Then,

e window opens.

hould open TextBox1.

se by hitting the Ctrl+Spacebar
64 Microsoft Visual Basic 2008 Express Edit

Opening IntelliSense: Pressing Ctrl+Spacebar

One of the easiest ways to open the

IntelliSense window is to press

Ctrl+Spacebar. Figure 5-8 shows an exam-

ple from the project currently open in my

code editor. You can see in this figure a list

of possible choices based on the context of

a form element named Form1.

Opening IntelliSense: Typing a
Period or Left Parenthesis

Another way you can get help using

IntelliSense is by typing a period (.) after an

element. The IntelliSense window will show up whether you are usin

own objects. For example, I requested the list of possible constructs

Form1. In this example, I was looking for the variable TextBox1, whic

text box on our form. By typing Me and then a period (.)—as in Me

all relevant objects in this context. Then by typing t, I received the li

nents that have names beginning with that letter. I just had to scroll

wanted: TextBox1. Figure 5-9 illustrates these steps in the code edito

Tab key to insert my selection, TextBox1, in the code.

TO USE INTELLISENSE

1. From the Toolbox, drag a button control to the form.

2. Double-click the button to open the button click event handler

where the cursor is blinking, press Ctrl+Spacebar. The IntelliSens

3. Type m, then e, and then a period (.).

4. Start typing textbox1. Before you finish the word, IntelliSense s

Press the Tab key to insert the component.

Figure 5-8
You can invoke IntelliSen
keystroke combination.

M O R E I N F O
 A neat feature in Visual Studio

tracks the changes you make

to the source code, similar to

the Track Changes feature in

Microsoft Word. In Visual Studio,

however, whenever you modify

your code, a colored line is added

to the beginning of that line.

A yellow line indicates that a

change was made but has not

been saved yet. If the line is

green, it means the change was

saved and is now part of the code

even if you exit Visual Studio. It’s

a really useful feature, and if you

want to turn it on, just click Tools,

Options, and then select the

Show All Settings check box at

the bottom left of the window. In

the tree view, expand Text Editor,

select General, and then select

Track Changes.

Figure 5-9
Getting help from IntelliSense by typ-
ing a period (.) after a valid object

65

T I P
 Know that at any time you’re

using IntelliSense, you can

press the Tab key to move

quickly through the selections

IntelliSense presents if the item

you’re looking for is already

selected.

N O T E
 If you drop a group of controls

onto a form, Visual Basic incre-

ments the number at the end of

the control name, for example

TextBox1, TextBox2, TextBox3,

and so on.

Figure 5-10
IntelliSense lists all the possible varia-
tions of using the WriteLine method.

T I P
 Before you can use the keyboard

to scroll, you might need to press

Esc to remove the contextual

IntelliSense window. It’s not

always necessary to press Esc in

these situations, but you do need

to do so with MessageBox.Show.
Chapter 5: Using Rapid Application Development Tools with Visual Basic 2008

5. Type a period (.) again, type text, and then press the Tab key or the spacebar. The code

line should look like this one:

Me.TextBox1.Text

6. Now add the equal sign (=), and type the string literal “Hello, World”; in the end, the

line should look like this:

Me.TextBox1.Text = “Hello, World”

You can now build and execute the application by pressing F5 and verify that it works.

When you click the button you created, you should get the string “Hello, World” in TextBox1,

which ordinarily should be the first one of the three text boxes.

You can also get additional help from IntelliSense if there’s more than one available

choice for your situation. Typing a left parenthesis displays a list of all possible choices. For

instance, when we created the console application in Chapter 3, we wrote to the console

using the Console.WriteLine method. We used this method with a string argument, but you

can do more with Console.WriteLine than just use a string as an argument. IntelliSense will

indicate whether there is more than one option. For Console.WriteLine, IntelliSense indicates

there are 18 possible variations, as you can see in Figure 5-10. I was looking for the second

variation, which is a Boolean argument. Now it’s your turn to try it.

TO SELECT FROM A LIST OF OPTIONS IN INTELLISENSE

1. If the source code is not visible, click the tab at the top of the code editor where you see the

filename Form1.vb. Add a new line in the Button1_Click event, type MessageBox.Show,

and then type (. The IntelliSense window opens and shows there are 21 possible variations

for MessageBox.Show.

 2. Press the Esc key, and then scroll through the list of options using the up and down

arrows on your keyboard. Display the option identified by “15 of 21.”

3. Complete the following line of code so it looks like this:

MessageBox.Show(“Hello Again”)

ion: Build a Program Now!

ou should see the “Hello,

p with the message

snippets are reusable

ithout typing a single

sic 2008 Express Edition.

-Catch blocks, and so

tatements with the

 choices. All code snip-

ields that are replaceable

u will be able to down-

N Web site, online com-

 own code snippets to the
66 Microsoft Visual Basic 2008 Express Edit

4. Build and execute the application. When you click the button, y

World” string in TextBox1, and then a dialog box should show u

“Hello Again.”

Using IntelliSense Code Snippets: The Time-Saver

Code snippets are the final IntelliSense feature I’ll discuss. Code

pieces of code with which you can complete a wide range of tasks w

line of code. More than 200 code snippets are available in Visual Ba

They are categorized by function and cover a wide variety of tasks:

Using common programming structures such as exceptions, ■ Try

forth (you’ll see more about these later in this chapter)

Sending e-mail messages ■

Resizing a form ■

Using Visual Basic language elements such as ■ If, For, and While s

correct syntax

Figure 5-11 shows a glimpse of a code snippet’s first-level menu

pets are made with customizable fields, which means they contain f

with code elements from your own applications. Going forward, yo

load additional code snippets from various sources such as the MSD

munities, and other .NET vendors. You will also be able to add your

code snippets library to fulfill your needs in other projects.

Figure 5-11
IntelliSense code snippets menus

N O T E
 It is important to note that

regardless of your current sticky

tab selection, IntelliSense will

always switch in real time to pro-

vide the best match for what you

are typing.

M O R E I N F O
 See the “Finding Additional

Information” section later in this

chapter for more information

about code snippets.

67
Chapter 5: Using Rapid Application Development Tools with Visual Basic 2008

Invoking IntelliSense Code Snippets

You can invoke code snippets in the code editor in two ways: by right-clicking and select-

ing Insert Snippets or by typing a question mark (?) in the editor and then hitting the Tab key.

TO USE CODE SNIPPETS

1. Using the previous test project, return to the code editor in the Button1_Click event, and

call up the IntelliSense code snippets menu by using either method described earlier.

2. On the first-level menu, double-click Code Patterns: If, For Each, Try Catch, Property, Etc.;

double-click Conditionals and Loops; and then select For...Next Statement. Look at Fig-

ure 5-12 to get a feel for which menu choices you should have on your screen. Double-

click For...Next Statement to insert the code in the code editor.

Figure 5-12
Code snippets within the Visual Basic language menus

3. Once you select the For...Next Statement option, a generic template for that language

construct appears, as shown in Figure 5-13. The highlighted fields in the “before” ver-

sion (the one shown on the left of Figure 5-13) are replacement fields prepopulated with

some default values that you can modify. Before you go to the next step, edit the code to

match the “after” version (the one on the right of Figure 5-13).

Figure 5-13
“Before” (left) and “after” (right) example of the For...Next code snippets

on: Build a Program Now!

e snippet simply by

me behavior as with the

will tell you how to do it.

 the button on the

In the second text box,

. This output is the result

lue and a comma to the

ake mistakes when we

al Basic 2008 gives you

istakes. In a sense, the

 are coding. Whenever

. Or, if the code is not

 squiggle under the

ill appear to indicate why

ear under the last letter

her instances and is
68 Microsoft Visual Basic 2008 Express Editi

If you know you want to use a For loop, you can also get the sam

entering For and then hitting the Tab key twice. You’ll get the sa

other two methods explained in this section. In fact, IntelliSense

Refer to Figure 5-14 for an example.

Figure 5-14
Hitting the Tab key twice to get the same snippet

4. Build and execute your application by pressing F5, and then click

displayed form to execute the code snippet you’ve just inserted.

you should see the numbers 1 through 10 separated by commas

of the For...Next statement looping 10 times, adding the index va

text box with each loop. In this sample, the index is i.

We all learn differently and at different speeds. We also might m

are learning something new, especially when we write code! So, Visu

real-time compiler feedback and suggests corrective actions to fix m

Visual Basic compiler is always working in the background while you

you make a mistake, you’ll see a blue squiggle under the faulty code

necessarily wrong but there is a potential problem, you’ll see a green

code. If you move your mouse pointer over the squiggle, a tooltip w

the compiler rejected your code. In some cases, a Smart Tag will app

of the faulty code. The Smart Tag here looks a little different from ot

represented by a small yellow line surrounded by a red box:

N O T E
 If you’ve used Visual Basic 2005

Express Edition or any other ver-

sion of Visual Studio 2005, you’ll

remember that the green high-

lights in snippets stuck around

the code after you were done

with a snippet. In Visual Basic

2008 Express Edition, they go

away as soon as you start typ-

ing something else. If you want

to use the snippet functionality,

simply right-click and select Show

Snippet Highlighting, and you’ll

get the green highlights for all

the snippets in that file. Note that

if you close the file, this function-

ality is not available anymore.

Exploring Real-Time Error Detection and Correction

69

re 5-15
f potential fixes for the current error
Chapter 5: Using Rapid Application Development Tools with Visual Basic 2008

If you move the mouse pointer, an exclamation point in a red circle will appear:

This indicates Visual Basic has found a potential fix for your problem.

Click the down arrow next to the exclamation point, and you’ll be pre-

sented with one or more potential fixes for your problem. Let’s try it with

our test project.

TO USE REAL-TIME ERROR DETECTION

1. In the Button1_Click event, add the following line of code:

Dim foo as Integr

2. Press Enter; Visual Basic indicates there’s a problem with the word Integr by showing a

blue squiggle. Move your mouse pointer over the Smart Tag.

3. When you see the exclamation point in a red circle, click the down arrow.

4. As you can see in Figure 5-15, you’re presented with a list of potential fixes for the

error. Of course, the list of potential fixes is based on your current context. The error

correction feature will always try to find the best solution. Select Change Integr to

Integer.

5. The blue squiggle disappears, and a green squiggle appears under the variable name

foo. Again, move your mouse pointer over the word that has the squiggle. A Smart

Tag warns that the local variable foo is not used anywhere else in the application. Warn-

ings are not critical and won’t stop the application from executing, so you can ignore this

warning.

You’ve just seen one case where the real-time error correction can intervene, but it can

intervene on many other occasions. Identifying the errors with the background compiler is

easy because it is automatic. Sometimes, the hard part is knowing what to do with errors.

The error correction feature also helps you with this by showing you more than one option

to fix the problem, as shown earlier in the integer example. Now let’s look at a different

example.

Figu
List o

on: Build a Program Now!

 ReadOnly to dismiss

Only.

eadOnly is not valid on a

al Basic 2008 Express

ber of classes found

finding good classes

ctivity goal in mind,

on classes from the

tion in a task-oriented

n programming tasks.

es, they would create a

ample
70 Microsoft Visual Basic 2008 Express Editi

TO CHOOSE FROM SEVERAL CORRECTION OPTIONS

1. Add the following line of code in the Button1_Click event code:

ReadOnly bar As Double

If you have trouble typing this line of code, press Esc after typing

IntelliSense. Press Enter, and a blue squiggle appears under Read

2. Move your mouse pointer over the Smart Tag. It indicates that R

local variable declaration.

3. Click the down arrow to the right of the

exclamation point. Visual Basic suggests a

fix and illustrates the correction by striking

out the incorrect code and inserting the

correct code, as shown in Figure 5-16. In

this case, you want to accept the change if it

makes sense in your application. If you want

to accept the change, just click the blue

suggestion.

So far, you’ve seen quite a few nice features that are part of Visu

Edition. What you’ve not yet seen and explored is the enormous num

in the .NET Framework. The .NET Framework is vast, and sometimes

and methods to solve a problem is difficult. Keeping the same produ

the Visual Basic team decided they had to assemble the most comm

.NET Framework in one collection. They decided to create this collec

way so that programmers can use it to accomplish the most commo

Furthermore, they decided that to provide easy access to those class

Figure 5-16
Code autocorrection ex

Oh, My...My Is Great

71

ure 5-17
ual representation of
 first-level menu for
 My namespace

C A U T I O N
 If you are not using the Windows

Vista or Windows XP operating

system, do a search to find a .wav

file on your hard disk, and then

enter the path as the argument to

the line of code shown earlier.

M O R E I N F O
 You can extend the My

namespace and classes to add

your own methods. They’ll also

show up in IntelliSense. See the

“Finding Additional Information”

section later in this chapter for a

link to an MSDN white paper that

explains in detail how to do this.
Chapter 5: Using Rapid Application Development Tools with Visual Basic 2008

new namespace and wrap those common classes and methods into a new set of categorized

classes called the My namespace. Basically, the My namespace gives a programmer access

to two different areas: .NET Framework classes and parts of a project (such as the forms, the

application settings and resources, and so forth). Let’s look at the list of high-level classes

found in the My namespace:

Application ■

Computer ■

Forms ■

Resources ■

Settings ■

User ■

WebServices ■

Figure 5-17 is a visual representation of these high-level classes from the code editor. In

the code editor, you simply have to type the keyword My followed by a period (.) to gain

access to the My namespace.

For instance, now you can play a .wav file simply by using the following syntax:

My.Computer.Audio.Play(“c:\windows\media\Windows Startup.wav”)

Test the previous line of code in the Button1_Click event to play the Windows start-up

sound. Then build your application and execute it. It’s that easy! It’s intuitive and a lot easier

to code now. Before the existence of the My namespace, to get the same functionality you

would have had to use either Win32 APIs or Direct Sound from the Microsoft DirectX family

and enter many more lines of code.

For more complicated tasks such as detecting network connectivity, application events,

and so forth, you gain a lot of productivity using the My namespace. Before, you would have

had to write nearly 200 lines of raw .NET Framework code—and maybe more! Now you

simply have to find the construct in the My namespace, select it, and add the context of your

application. For easier tasks, you might not save a lot of lines of code using the My

namespace, but you certainly save time otherwise spent researching corresponding classes in

the .NET Framework.

Fig
Vis
the
the

tion: Build a Program Now!

 in the My namespace:

. It’s a great solution for a

ou might have to call the

 lines of code.

t provides you, the pro-

 symbol’s name (symbols

 the symbol is referenced

tems in your applications
72 Microsoft Visual Basic 2008 Express Edi

Here are just a few of the common tasks you can expect to find

Displaying an application splash screen ■

Getting your computer name ■

Getting network settings ■

Verifying that a Web site is up and running ■

Reading a text file into a string ■

Sending something to print on the default printer ■

Getting application settings ■

Of course, the My namespace is not the answer to all problems

number of common scenarios, but to solve some other problems, y

different classes from the .NET Framework directly and write more

The rename feature found in Visual Basic 2008 is quite useful. I

grammer, with an easy, automatic, and effective way of changing a

include variables, filenames, visual controls, and so on) everywhere

in the code. You can update the variables, controls, and any other i

to meaningful names by using the renaming symbol functionality.

Renaming

M O R E I N F O
 Here is a list of what can be referenced as a symbol:

■ Type definitions such as classes, modules, structures, enums,

delegates, and interfaces

■ Type members such as methods, properties, and events

■ Member variables of classes, modules, structures, and enums

■ Local variables inside functions and properties

73

Behind the Scenes

This is a good point to introduce

a new button in the Solution

Explorer toolbar. The Show All

Files button looks like this in the

toolbar:

In Visual Basic 2008, and

especially in Express Edition, the

design philosophy has always

been productivity. Therefore, the

Solution Explorer interface is not

filled with files and settings that

most users will not need on a

daily basis. But some elements

are included in the interface for

learning purposes or for when

you are solving complex prob-

lems and might want to directly

dig into all the files associated

with your project. Some files are

generated automatically when

you perform actions in the IDE,

and in most situations it’s just

fine like that; you do not need

to care about all the details all

the time. In situations where

you want more control, you can

click the Show All Files button

and go directly to the compo-

nent of your choice.
Chapter 5: Using Rapid Application Development Tools with Visual Basic 2008

Why Should You Rename?

So far in the test project we’ve worked in, we haven’t paid attention to the controls’

names because we didn’t have to write much code and because the project was a quick

prototype to test new features. At this point, our controls are all named something like

Textbox1, Textbox2, Label1, and so on. That’s OK for what we’ve been doing, but when you

develop your own applications, you’ll always want to give meaningful names to your controls

and variables so that your code becomes self-documented and easier to read and maintain.

How to Use the Rename Feature

You can use the renaming feature from three different places within the IDE: in the Prop-

erties window, in the code, and in Solution Explorer.

The first place you can use the renaming feature is in the Properties window at design

time. So far in our test project, we’ve used the form name Form1. In the next exercise, we’ll

rename Form1 to TestProjectForm. The expectation is that this change gets propagated

throughout the code in the project. But just to see how the functionality works, we’ll look

into all files where the Form1 symbol is used.

TO USE THE RENAME FEATURE

 1. In Solution Explorer, click the Show All Files button.

You should see a lot of new elements showing up in the project. In the following step

we’ll examine the code that Visual Basic 2008 Express Edition automatically generates

when we manipulate controls on the design surface.

2. Expand Form1.vb. Figure 5-18 shows what you should see in

Solution Explorer. Right-click the file named Form1.Designer.

vb, and then select View Code.

3. Now I’ll introduce you to a useful feature: search. With the

Form1.Designer.vb source code in the code editor, press

Ctrl+F, and then type Form1 in the Find What text box. Before

you click the Find Next button, make sure to select Current

Project from the Look In list box.

Figure 5-18
Getting to the autogenerated
code for the form elements

ition: Build a Program Now!

 [Design] tab to return to

1 is selected. Modify the

Enter to begin renaming.

he only occurrence left is

hat is, the title bar name).

, place the cursor any-

 left of Figure 5-20

ld now look like the one

.

ty of the text box control

me you would save using

 code. Not only would you

asier to read.

9
d Replace dialog box
74 Microsoft Visual Basic 2008 Express Ed

Figure 5-19 shows how the search should be configured.

4. Search for all occurrences of Form1 in the code

by clicking the Find Next button. You should see

that the search goes through four files: Form1.vb,

Form1.Designer.vb, Application.Designer.vb, and

Application.myapp.

Once all instances of Form1 have been found, a

dialog box will display a message saying that the

search is complete and that there are no more

occurrences left based on your search criteria.

5. Now that all instances of Form1 have been identi-

fied, you can rename the form. To do that, select the Form1.vb

the designer surface. Then click the title bar to select the form.

6. In the Properties window, be sure the form control named Form

(Name) property by changing Form1 to TestProjectForm. Press

A small hourglass appears while the renaming is in process.

7. Now repeat the search from steps 3 and 4, and you’ll see that t

a string that corresponds to the Form control’s Text property (t

8. You can also rename a symbol directly in the code. In Form1.vb

where in the word TextBox1 in the following line of code:

Me.TextBox1.Text = “Hello, World”

9. Right-click, and select Rename; a dialog box like the one on the

appears. Replace TextBox1 with tbMessage; the dialog box shou

on the right of Figure 5-20.

10. Click OK to replace all occurrences of TextBox1 with tbMessage

A search should find only one comment and the Name proper

with the string “TextBox1”—it’s that easy. Imagine how much ti

the rename feature if you had 10 files with hundreds of lines of

be sure to find every occurrence, but the code would be a lot e

Figure 5-1
The Find an

OOP Terminology

Although this book is not an OOP

book, we’ll certainly use many of

those constructs in the applica-

tions that we build. I talked about

OOP in Chapter 1, “Introducing

Microsoft Visual Basic 2008

Express Edition,” and in Chapter

4, but if you want to learn more

about this paradigm, you can go

to the Start Page. If it’s not visible,

just click View, Other Windows,

and then select Start Page. On

the Start Page, click the Learn VB

hyperlink in the Getting Started

section. Locate the Programming

with Objects: Using Classes sec-

tion. Then click and read when-

ever you want to learn more

about OOP and the Visual Basic

 language.

75
Chapter 5: Using Rapid Application Development Tools with Visual Basic 2008

Figure 5-20
Rename dialog boxes: before (left) and after (right) a rename

11. The third way to rename a symbol, and in this case only for project elements, is to do

it directly in Solution Explorer. Even though earlier we changed the Form1 variable into

something more meaningful, the filename Form1 hasn’t changed because it’s not in the

source code; it’s in Solution Explorer and contained in the project, so it’s still Form1.vb.

For consistency, right-click the filename Form1.vb in Solution Explorer, select Rename,

and then change the filename to TestProjectFormOtherName.vb. Two things will happen:

first, you’ll see that the filename and all dependent filenames are automatically changed

to the new name; and second, you’ll see that all references to TestProjectForm are now

changed to TestProjectFormOtherName. You can verify this renaming change by pressing

Ctrl+F and performing a search on the old name (Form1.vb).

Exploring Common Windows Controls

I will not spend a lot of time here explaining all the details and properties of each con-

trol in the Toolbox. This book is not a reference about Windows Forms programming. Other

books do a great job with that topic. However, Table 5-1 provides a quick introduction to the

common controls you will find in most Windows applications.

on: Build a Program Now!

ts a user communi-

tiate an action. In your

 clicked by the user

t your code needs to

to get user input. On

a single or multiline

rovide password char-

 need this behavior in

a good choice for user

rictive in choices, such

n (yes/no or on/off) or

ces (like a list of coun-

 for names, addresses,

s, and so on.

imple text used to

ols. It is generally not

l.

hen multiple choices

ser can pick only one

y you have an applica-

 provide the option

or color. You could

s so that the user can

ethod.
76 Microsoft Visual Basic 2008 Express Editi

Visual Representation Name Description

Button The button control le

cate a decision or ini

application, a button

triggers an event tha

handle.

TextBox The text box is used

the screen it can be

control. It can also p

acter masking if you

your application. It’s

input that is not rest

as a Boolean decisio

a list of specific choi

try names). It’s good

phone numbers, URL

Label The label is usually s

describe other contr

an interactive contro

RadioButton This control is used w

are offered but the u

from the list. Let’s sa

tion and you want to

to print in grayscale

use two radio button

select the desired m

Table 5-1
Common Controls

77
Chapter 5: Using Rapid Application Development Tools with Visual Basic 2008

Visual Representation Name Description

CheckBox A check box is great for Boolean choices

(for example, on/off, yes/no, and so on). It

can also be used in a group of check boxes

to indicate characteristics of a single entity.

For instance, in a car-ordering tool that is

part of a dealership application, you could

have check boxes for all the car character-

istics (that is, AM/FM radio, CD changer,

heated seats, metallic paint, and so on).

ComboBox A combo box is a combination of a text box

and a drop-down list with valid choices. It’s

great for displaying an editable text box with

a list of permitted values. You can have auto-

complete, and the values can be sorted. The

values can come from static entry or from

other sources of data such as a database. For

instance, a good example is selecting a state.

You can either enter the state name or select

it from the list of possible values.

ListBox A list box is a short list of valid choices for

the domain this component represents. This

control is great when there is a list of pos-

sible choices that is not too big in number.

It does not allow the user to enter text but

lets the user select one or more than one

choice by using Ctrl or Shift.

Table 5-1 (continued)
Common Controls

ion: Build a Program Now!

is helpful for displaying

 control when a user

inter over the control.

 useful when you want

numerical value in a

ers. It allows the user to

rical value from the list

n button to increment

number. It’s a perfect

r to pick a numerical

mponent of a date.

should make it clear that

 save time and effort, you

little effort. It is especially

 is selected without hav-

ys keep the 80/20 rule in

 don’t need to reinvent

never you select a menu

u are generating an

u work. Events are gen-
78 Microsoft Visual Basic 2008 Express Edit

Visual Representation Name Description

ToolTip The tooltip control

information about a

holds the mouse po

NumericUpDown This control is really

the user to select a

defined set of numb

select a single nume

using the up or dow

and decrement the

way to force the use

value for the year co

Table 5-1 (continued)
Common Controls

Many more controls exist than those shown here, but this table

you have a plethora of controls available to perform many tasks. To

can usually find a control to provide the results you want with very

desirable if the control you pick can restrict choices or how the data

ing to perform any other validation. In software development, alwa

mind: 80 percent of results for 20 percent effort. Keep it simple; you

the wheel.

All Windows applications are event-driven. This means that whe

item, click a button, or even move from one text box to another, yo

event. Blocks of code attached to each of your actions execute as yo

What Happens When an Event Is Triggered?

79

N O T E
 To add the menus and toolbar

buttons, go to the Toolbox in

the Menus & Toolbars category,

and add a MenuStrip control and

a ToolStrip control to the form.

Next, select each control, open

the Smart Tag menu, and select

Insert Standard Items.
Chapter 5: Using Rapid Application Development Tools with Visual Basic 2008

erated not only by your actions but also by the surrounding environment, namely, Windows

or external sources. To understand what “external sources” means, think about any Instant

messenger application, for example, Windows Live Messenger. When you chat with someone

and exchange data back and forth, you are actually generating events. In nontechnical terms,

data coming from your friend over the Internet is an event.

These events exist for a multitude of actions you often take—probably without even

realizing they are events. Some events are handled for you by autogenerated code, such as

clicking the red X in the right corner of an application, and some others need to be handled

by your code.

In this section, we’ll start to work on wiring source code to events. For practice, we will

wire two objects from our test project. Before beginning, use what you’ve learned so far to

make the test project look like Figure 5-21.

When an event is triggered, the code that is wired

to handle the event is executed. If there is no code

attached to a particular event, nothing happens. Our

application is basically in that stage right now (except

for the button that was doing some work for us, as

shown previously). We will add some functionality to our

test project application by wiring the Save menu item

and the toolbar Save button to source code that will

save all the content of the text boxes to a simple text file

in the current directory. Because the Save and Open file

dialog boxes are standard (and also to get a consistent

feel to applications), the Visual Basic development team

decided to write save and open controls and make them

available to you. We’ll take advantage of this shortcut in

our exercise.

TO WIRE SOURCE CODE TO EVENTS

1. Drag the SaveFileDialog control in the Toolbox’s Dialogs category to the form. This

 control has no design-time representation; it will appear (along with the MenuStrip and

Figure 5-21
Customer Info form

n: Build a Program Now!

ection below the

ol is

e presented with the

ent procedure. (I will

entation of the SaveFileDialog
80 Microsoft Visual Basic 2008 Express Editio

ToolStrip controls) only in the component tray, which is the gray s

designer surface. See Figure 5-22 for the location

of the SaveFileDialog control.

We’ll use the SaveFileDialog control to wire

the click event to both the Save button on the

toolbar and the Save item in the File menu.

To have the same operation performed when

either event occurs, we’ll write a block of code

called a method, and we will then call this

method in all places we need it. The block of

code will perform the same operation whether

it is triggered by the button on the toolbar or

by the menu selection.

2. Click the blue disk icon on the ToolStrip control

to select it. Refer to the Properties window to

be sure you have the correct control, which

should be called SaveToolStripButton, as shown

in Figure 5-23.

Figure 5-23
Verify that the name and type of contr
the one you intend to work with.

3. Double-click the blue disk on the designer surface, and you will b

default event template for this control, which is the click event.

4. Add the following line of code to the SaveToolStripButton_Click ev

explain what it does in a moment.)

Me.SaveFileDialog1.ShowDialog()

Figure 5-22
Design-time repres
control

T I P
 If you want to look at all the pos-

sible events that can be fired for

a particular control, you can click

the yellow lightning icon at the

top of the Properties window.

To return to the properties, you

just have to click the little sheet

symbol to the left of the yellow

lightning icon.

Using Comments in
Your Code

One good habit you should start

embracing when writing code is

to comment your code. Right now,

the code for the problems we are

solving isn’t too complicated. But

keep in mind that adding com-

ments serves the following pur-

poses: first, your code becomes

much more maintainable because

you can return six months later

and, if the comments are good,

be able to understand what you

developed. It also makes your

code more readable and facili-

tates getting help from somebody.

Write your comments in regular

English without too much jargon.

Comments are never compiled in

the application you execute, so

they will never slow down the per-

formance of your application.

Using Comments in
Your Code (continued)

81

As you can see in the listing

in step 8, you can comment your

code by inserting a single quota-

tion mark and then typing your

comment. Your comment should

appear in green; if not, then your

line is not seen as a comment by

the compiler. Another good way

to comment your code is to use

two buttons from one of the tool-

bars. Let’s say you decide that all

the previous code in the FileOk

event is not the code you want

to execute because you want to

test something else. You do not

want to delete all the text, but

you can comment out the code

by selecting it and then clicking

the Comment Out the Selected

Lines button. And if you want

to uncomment a block of code,

you just have to select the code

you want to uncomment and

then click the Uncomment the

Selected Lines button.

5. This block of code

displays the SaveFileDia-
Chapter 5: Using Rapid Application Development Tools with Visual Basic 2008

log1 dialog box by calling the ShowDialog() method on it. At this point, if you want to see

the effect of the change, just build and execute the application by pressing F5, and then

click the Save button to see that the Save dialog box does appear.

6. In every SaveFileDialog dialog box, there is a Save button and a Cancel button. The

Cancel button is automatically taken care of for us. But we need to wire what is going to

happen when the user clicks the Save button of that new dialog box.

7. Make sure you have stopped the execution of the application. Now, to wire the Save

button, select the saveFileDialog1 icon in the component tray, and double-click it to get

to the most common event, which is the FileOk event in this case.

8. We’ll use code snippets to insert the code that will

execute when the user clicks the Save button. Remember

that to get to the code snippets, you need to right-click

in the code editor, select Insert Snippet, and then fol-

low the different path choices. You need to write to a

file, so use the following path: Application – Compiling,

Resources, and Settings: Write to a Text File. When you

are finished, your code should look like the “SaveFileDia-

log1_FileOk Method” listing shown here. Examine the

comments to understand what we are trying to accomplish.

SaveFileDialog1_FileOk Method

Private Sub SaveFileDialog1_FileOk(ByVal sender As System.Object, ByVal e As _

 System.ComponentModel.CancelEventArgs) Handles SaveFileDialog1.FileOk

 Try

 ‘ The property FileName from the first argument in WriteAllText refers

 ‘ to the filename selected by the user in SaveFileDialog1

 ‘ Then we are passing the content of each TextBox and concatenating the

 ‘ Carriage Return-Line Feed constant

 ‘ The last parameter indicates whether we should append to a file if it

 ‘ exists. False will not, and therefore it will re-create the file each

 ‘ time. In order to add the content of the first box, we need to put

 ‘ true for the 2nd and 3rd write; otherwise, only the last write would

 ‘ be there if they are all false.

 My.Computer.FileSystem.WriteAllText(Me.SaveFileDialog1.FileName, _

T I P
 Some lines of code can get rather

long. In Visual Basic you can use

a space and an underscore (_)

to indicate that a line of code

continues on the next line. A line

of code can typically be broken

where a space occurs; however,

in some locations (such as within

a quoted string), a line cannot be

broken.

ion: Build a Program Now!

ame, _

ame, _

e menu selection.

e code as in step 4.

text in the text boxes,

e Save toolbar button.

ved is really what was on

 Visual Studio by click-

d file. Open it to view its

ready handled events

ties of other controls. For

hen you handled the but-

 property.

 snippets. You can also fill all
82 Microsoft Visual Basic 2008 Express Edit

 Me.tbMessage.Text & vbCrLf, False)

 My.Computer.FileSystem.WriteAllText(Me.SaveFileDialog1.FileN

 Me.TextBox2.Text & vbCrLf, True)

 My.Computer.FileSystem.WriteAllText(Me.SaveFileDialog1.FileN

 Me.TextBox3.Text & vbCrLf, True)

 Catch fileException As ApplicationException

 Throw fileException

 End Try

End Sub

9. Now we just need to attach the same event code to the File, Sav

Double-click the Save choice in the File menu, and add the sam

Build the application, and execute it by pressing F5. Type some

and then save the content to a file by using the Save menu or th

You should verify that the content of the file your application sa

the form. So, to verify that it worked properly, open the file with

ing File, Open File and then browsing to the location of the save

contents.

You just handled two events, but I want to point out that you al

previously by coding the Button1_Click event and modifying proper

instance, you modified the Text property of the text box controls w

ton click. And you were able to do that by using the control’s Name

Finding Additional Information

With the code snippet editor you can create, edit, and debug your own code

the metadata, shortcut, replace-

ment variables, and replacement

assemblies. Here is the link to that

tool: http://msdn2.microsoft.com/

en-us/vbasic/bb973770.aspx. The

videos from MSDN are another

good source of information. I sug-

gest you watch the following two

lessons (even though they were

made for Visual Basic 2005, they

still apply); they will reinforce a lot

of topics covered in this chapter:

Lesson 2 video: http://msdn2.

microsoft.com/en-us/begin-

ner/bb308740.aspx

Lesson 3 video: http://msdn2.

microsoft.com/en-us/begin-

ner/bb308743.aspx

Those two lessons are a pretty

good complement to this chapter.

As an advanced topic, if you want

to extend the My namespace, here

is a good MSDN white paper:

http://www.msdn.microsoft

.com/msdnmag/issues/

05/07/my/default.aspx

Wow, this was a big

chapter that covered a lot

of features. These features

will definitely help you write

applications on your own.

Specifically, the chapter cov-

ered IDE features such as snap

83
Chapter 5: Using Rapid Application Development Tools with Visual Basic 2008

In Summary…

lines to help you to align the controls on the form. It also covered the rich features of Intel-

liSense, which help you type your code by either suggesting appropriate choices, completing

code sentences for you, or providing you with code snippets. In the end, IntelliSense is there

to reduce the amount of typing you do, to help you learn the language, and to help you

increase your productivity. On top of that, it is a great feature for beginners.

You then saw how the compiler is working in the background in real time to detect errors

and provide you with suggestions to fix them. The chapter also reviewed the introduction of

the My namespace in Visual Basic. This new namespace provides an easy way to perform a

multitude of common tasks by encapsulating a lot of lines of .NET raw code in simpler, one-

line syntax. Often, one line of code replaces up to 200 lines of raw .NET code.

You then saw the benefits of the renaming feature to replace symbol names in all project

files. It is especially useful to replace autogenerated variable names with more meaningful

variable names. You examined the most common controls you will find in every Windows

application with some graphical examples and learned when to use them. Finally, the chapter

ended with how event-based programming is performed.

In the next chapter, you’ll put into practice everything you just learned in this chapter.

You’ll also take a look at some new features, controls, and concepts that you’ll use as we

continue with the Web browser project.

85

oncepts presented in the

ur skills and take your Web

add rich features to your

g box, tool strips, menu

rich user experience à la

ress bar, and professional-

 learn about new Microsoft

ment Outline window. You’ll

e WebBrowser control. Finally,

ation, because you will

w technology.
6
Opening Your
Application, 86

Interacting Through
Dialog Boxes, 93

Having a Professional
Look and Feel at Your
Fingertips, 99

Redoing the Browser, 112

Chapter 6
Modifying Your
Web Browser

After learning about the avalanche of new c

first few chapters, you’re now ready to apply yo

browser to the next level. In this chapter, you’ll

browser such as a splash screen, an About dialo

strips, a tool strip container that will give you a

Windows Internet Explorer, a status strip, a prog

looking toolbars with “déjà vu” icons. You’ll also

Visual Basic 2008 IDE features such as the Docu

also learn to respond to events coming from th

you’ll learn about Windows Presentation Found

modify your Web browser project using this ne

tion: Build a Program Now!

 a splash screen. Some

s you see for Microsoft

n very nice looking, they

g artwork or just to make

 started an application,

necting to databases,

nfigurations for user inter-

 all of this processing is

king.

es not allow any input

work, the application

es you’ll add to your Web

d in Chapter 4, “Creating

the companion content to

cation on your hard disk:

 folder named Start in the

u want, you can also start

licking Project, Add Win-

roject name (in this case,

orm. The Add New Item

late already exists.

own in Figure 6-1. Then
86 Microsoft Visual Basic 2008 Express Edi

When you load an application, you often see something called

good examples of splash screens are the opening information boxe

Office and Visual Studio 2008. Although the splash screens are ofte

aren’t there just to display the software version and some appealin

sure you’re not bored. These screens serve a function. Once you’ve

a lot of processing is happening; for instance, the application is con

populating controls with data from the database, getting saved co

face (UI) preferences, and so on. Displaying the splash screen while

happening helps inform the user that the application is indeed wor

Technically speaking, a splash screen is a Windows form that do

from the user. It usually has a nice presentation form with some art

name, its version, and often some legal text. One of the first featur

browser application is a splash screen.

In this chapter, you’ll modify the browser application you create

Your Own Web Browser in Less Than Five Minutes.” If you installed

the default location, you can find the application at the following lo

Documents\Microsoft Press\VB 2008 Express\Chapter6\. Look for a

Chapter6 folder. Double-click the MyOwnBrowser.sln solution. If yo

from your own Chapter 4 browser project.

TO CREATE A SPLASH SCREEN

1. Open the Add New Item dialog box. You can do this either by c

dows Form or by going to Solution Explorer, right-clicking the p

MyOwnBrowser), selecting Add, and then selecting Windows F

dialog box appears, and you will see that a Splash Screen temp

2. Select the Splash Screen template, and name it Splash.vb, as sh

click Add.

Opening Your Application

87

I P
ften, it’s difficult to select a par-

icular control. To see all controls

n the currently displayed form,

ou first have to click anywhere

n the form, and then you can

elect from the drop-down list at

he top of the Properties window.

igure 6-2 shows the drop-down

ist for the splash screen form.

o select any particular control,

ighlight it in the list, which will

elect it on the design surface.

O T E
ach cell in a TableLayoutPanel

ontrol can contain only one

ontrol, but you can always insert

nother TableLayoutPanel control

s was done for the Splash Screen

emplate.
Chapter 6: Modifying Your Web Browser

Figure 6-1
Adding a new Windows form: New Item template choices

3. Go to the Design view of the splash screen, and you’ll see that the screen is split into

multiple squares. In fact, the splash screen is a TableLayoutPanel control. This control

helps you by arranging the layout of your components in a table format with a set of

rows and columns. You can customize the rows and col-

umns by modifying properties in the Properties window or

by using source code. The control also features a Smart Tag

to easily add or remove rows and columns. (The splash

screen has two rows and two columns by default.) If you

look carefully, you’ll see that the Splash Screen template has

another TableLayoutPanel control located in the bottom-

right cell (represented by the dotted rectangle).
Figure 6-2
Use the Properties window to find
all the controls on a selected form

T
O

t

i

y

o

s

t

F

l

T

h

s

N
 E

c

c

a

a

t

on: Build a Program Now!

btained dynamically. This

where in your project.

hen the splash screen is

ner’s Application pane.

IGHT PROPERTIES

se Properties.

 a series of information

or now, which is the

 All the elements you’ll
88 Microsoft Visual Basic 2008 Express Editi

The application title, version, and copyright information are all o

means the form will get the values from a variable or a setting some

In fact, at run time those three pieces of information are obtained w

loaded by looking up application settings stored in the Project Desig

TO VIEW THE APPLICATION TITLE, VERSION, AND COPYR

1. Select MyOwnBrowser in Solution Explorer, right-click, and choo

The Project Designer page opens. The Project Designer page has

tabs (as shown in Figure 6-3). You’ll work mainly on the first tab f

Application pane. You’ll configure several elements on this pane.

modify will affect how the application looks.

Figure 6-3
Project Designer page

89

N O T E
 You’re not changing the icon of

the main form when doing this

application icon change. To do

that, you need to change the

form icon’s property by assigning

a bitmap image. You’ll change

the main form icon later in this

chapter.

N O T E
 The assembly version informa-

tion you see here is also what

the application will display in

the splash screen you’re creat-

ing. You’ll see the source code

that will display the information

on the splash screen later in the

chapter.
Chapter 6: Modifying Your Web Browser

2. To change the application icon, click the Icon drop-down list, and select <Browse…>. Find

the Chapter6 directory where you installed the book’s sample files and look for the

globe.ico file in the Images folder. (If you installed the companion content at the default

location, then the file should be at the following location on your hard disk: Documents\

Microsoft Press\VB 2008 Express\Chapter6\Complete\Images.)

You’ve changed the icon of your application assembly; in other words, you’ve changed

the icon of the executable binary (.exe) file itself. If you build the application and look on

your hard disk where the application is compiled (as you learned in a previous chapter,

all your projects are by default located at a path such as Documents\Visual Studio 2008\

Projects\MyOwnBrowser\MyOwnBrowser\bin\Debug or \bin\Release), you’ll find that

your application, MyOwnBrowser.exe, has the globe icon that you’ve just selected instead

of a default icon.

3. Click the Assembly Information button. You should see a dialog box that looks like the

one in Figure 6-4.

Figure 6-4
Assembly Information dialog box

n: Build a Program Now!

ith your name, and

 is not already filled with

rmation.)

 box. (This string is used

aces to get the follow-

 the Splash Screen

n tab.

pressing Ctrl+S saves

e browser form

o really look at it. To see

rsion number, and copy-

n get there?
90 Microsoft Visual Basic 2008 Express Editio

4. Change the Copyright text box by replacing the word Microsoft w

keep the rest of the information as it is. (If the Copyright text box

your information, change it to match your name or company info

5. Insert spaces between the words MyOwnBrowser in the Title text

to display the application title on the splash screen.) Insert two sp

ing title: My Own Browser.

6. Click OK to close the Assembly Information dialog box.

7. To attach the splash screen to your application, select Splash from

drop-down list at the bottom of the Project Designer’s Applicatio

8. Save the application (pressing Ctrl+Shift+S saves all the files, and

the current file), and press F5 to run it.

You should see the splash screen for about two seconds before th

appears. Two seconds isn’t a long time, so you might not have time t

what it actually looks like at run time, look at Figure 6-5. The title, ve

right information appear automatically. But how does the informatio

Figure 6-5
Splash screen in action

M O R E I N F O
 In the Project Designer, when

the Enable XP Visual Styles check

box is selected, your applica-

tion will inherit the look and feel

of Microsoft Windows XP. For

example, it gives you controls

with rounded corners that light

up when you hold your mouse

pointer over them. There’s also

a new colorful progress bar

and many other features you’ve

probably seen before. Note that

when executed on a platform

that doesn’t support Windows XP

themes, the application reverts to

the traditional Windows look and

feel (Windows 2000 or Windows

98). As mentioned, later in this

chapter we will develop the appli-

cation using WPF, and we will

then have an application with the

visual styles of the Windows Vista

operating system.

91
Chapter 6: Modifying Your Web Browser

Those three pieces of information are obtained programmatically using a familiar con-

struct—the My namespace. (By “programmatically,” I mean writing code to set or get some-

thing you would ordinarily set or get using a UI tool, such as the Properties window or the

Project Designer.) One important part of the Splash Screen template is the Form Load event;

each form has a Load event that happens just before the form is displayed. This is where

you’ll usually perform the initialization for controls on your form. Review the Splash_Load

method (in Splash.vb), specifically the following highlighted code, to understand where and

how the My classes and methods are used to populate the fields on the splash screen:

Private Sub splash_Load(ByVal sender As Object, ByVal e As System.EventArgs) _

 Handles Me.Load

 ‘Set up the dialog text at runtime according to the application’s assembly

 ‘information.

 ‘TODO: Customize the application’s assembly information in the

 ‘Application pane of the project properties dialog (under the Project menu).

 ‘Application title

 If My.Application.Info.Title <> “” Then

 ApplicationTitle.Text = My.Application.Info.Title

 Else

 ‘If the application title is missing, use the application name, without

 ‘ the extension

 ApplicationTitle.Text = System.IO.Path.GetFileNameWithoutExtension(_

 My.Application.Info.AssemblyName)

 End If

 ‘Format the version information using the text set into the Version

 ‘design time as the formatting string. This allows for effective

 ‘localization if desired. Build and revision information could be included

 ‘by using the following code and changing the Version control’s design-time

 ‘text to “Version {0}.{1:00}.{2}.{3}” or something similar.

 ‘See String.Format() in Help for more information.

 ‘

 ‘ Version.Text = System.String.Format(Version.Text, _

 ‘ My.Application.Info.Version.Major, My.Application.Info.Version.Minor, _

 ‘ My.Application.Info.Version.Build, My.Application.Info.Version.Revision)

tion: Build a Program Now!

plication settings without

y namespace.

creen is too short. For

databases, retrieve

might take more than

me to look at the screen.

simply have to call the My

the delay, you need to

lect the New method.

ods for that class.
92 Microsoft Visual Basic 2008 Express Edi

 Version.Text = System.String.Format(Version.Text, _

 My.Application.Info.Version.Major, _

 My.Application.Info.Version.Minor)

 ‘Copyright info

 Copyright.Text = My.Application.Info.Copyright

End Sub

As you can see, My.Application.Info was useful for obtaining ap

reading those settings from a special file. That’s the magic of the M

You might think the time the splash screen is displayed on the s

example, a bigger application might need to open connections to

information, and do all kinds of initialization upon launching, so it

two seconds. Or, you might simply want your users to have more ti

There’s an easy way to change the amount of time it displays. You

namespace to the rescue! To add the line of code that will change

open a method from the splash screen form and class:

1. Right-click Splash.vb, and select View Code.

2. Click the drop-down list on the right side of the window, and se

Look at Figure 6-6 to see where you can access the list of meth

Figure 6-6
List of methods for the Splash class

M O R E I N F O
 You can change the bitmap

image on the splash screen to

whatever you want by modify-

ing the MainLayoutPanel –

BackgroundImage property in

the Properties window. You can

also change the size of the splash

screen to fit the size of your

image or use imaging software to

change the size of the image to

fit the splash screen.

93

M O R E I N F O
I’m sure you’ve seen the format-

ting in the Properties window for

the version number. This special

notation is how strings are for-

matted. To really understand,

I recommend you press F1 to

search the software documenta-

tion for String.Format. You’ll find

all possible formatting options

and how to use them.

N O T E
 When a procedure directive tells

you to add a control and then

name it XYZ, it means you need

to add the control to the design

surface, go to the Properties win-

dow, and then change the (Name)

property of the control to XYZ.
Chapter 6: Modifying Your Web Browser

3. Just insert the two bold lines in the following code. The delay is expressed in milliseconds

and in this case will display your splash screen for three and a half seconds.

Public Sub New()

 ‘ This call will change the display time for the splash screen

 My.Application.MinimumSplashScreenDisplayTime = 3500

 ‘ This call is required by the Windows Form Designer.

 InitializeComponent()

 ‘ Add any initialization after the InitializeComponent() call.

End Sub

Interacting Through Dialog Boxes

The dialog boxes you create help the user interact with the software. They are additional

forms that you add to your application. In the following sections, you’ll add two dialog boxes

to your Web browser: an About dialog box and a Navigate dialog box.

Adding an About Dialog Box

The first dialog box you’ll add is an About dialog box, which exists in most Windows

applications. This dialog box contains essentially the same information as the splash screen

but sometimes contains more legal, system, and version information.

Before you add this About dialog box, you’ll give Form1 a more meaningful name.

(Keep in mind that everything in your application needs to be meaningful for readability

and maintenance.) You’ll also prepare the application for a transformation into a more

feature-rich Internet browser.

ition: Build a Program Now!

elete the btnGo_Click event

ser.vb file.

g the Smart Tag, select

ct, but this time when pre-

en name it AboutBox.vb.

lated with information

his point, if you run the

d the rest of your browser,

hows up when you request

rm’s Design view. Drag a

dd it to the Browser form.

k the Smart Tag, and then

lication menu strip and its

cuts.

 command in the Help

click to open the context

separators (that is, the lines

ble-click the About... menu

ler.
94 Microsoft Visual Basic 2008 Express Ed

TO ADD AN ABOUT DIALOG BOX

1. In Solution Explorer, rename Form1.vb to Browser.vb.

2. On the Browser form, delete the txtURL and btnGo controls. D

handler by removing its signature and content from the Brow

3. On the Browser form, select the WebBrowser control, and usin

Dock in Parent Container.

4. As you did for the splash screen, add a new item to your proje

sented with the templates, choose the About Box template. Th

Similar to the splash screen, the About dialog box will be popu

from the project settings in the Project Designer window. At t

application, there is no link between your About dialog box an

so it won’t show up anywhere. Usually, the About dialog box s

it from the Help menu, so you’ll add this missing link now.

TO LINK THE ABOUT BOX TO THE HELP MENU

1. Select the Browser.vb [Design]* tab to return to the Browser fo

MenuStrip control from the Toolbox to the design surface to a

Name it msBrowser.

2. To add the Help menu, select the menu strip on the form, clic

select Insert Standard Items. You’ll get a familiar Windows app

menu choices with their submenus, icons, and keyboard short

3. Delete all menu choices except the Help menu and the About

menu. To perform this cleanup, select any menu choice, right-

menu, and select Delete to remove it. Also remove the menu

separating menu choices).

4. To wire the new About form to the About... menu choice, dou

choice to get to the AboutToolStripMenuItem_Click event hand

T I P
 To delete the event handler code,

in Solution Explorer, right-click

the Browser.vb file, and select

View Code. Delete the entire

btnGo_Click method.

95

N O T E
 I modified the Assembly

Information fields in the Project

Designer to come up with the

information displayed in the

About dialog box. You can do the

same. You simply add or modify

the content in the Description,

Company, Product, and Copyright

fields.
Chapter 6: Modifying Your Web Browser

5. Add the following line of code to the event handler:

AboutBox.ShowDialog()

6. Save the application, and then run it. Select Help, About.... The screen should resemble

Figure 6-7. The ShowDialog() method opens the form in the middle of the executing

application, and nothing else can happen until you click one of its buttons or the red X to

close the dialog box. In this case, it has only the OK button.

Figure 6-7
About My Own Browser dialog box showing up in your newly refined browser application

You’re probably wondering why the application worked when you clicked the OK but-

ton even though you didn’t write any code to handle this event. This is an example of the

productivity gains you’ll get when using templates. The template includes the code to

handle the button Click event. Review the source code for the dialog box by right-clicking

the AboutBox.vb file in Solution Explorer and selecting View Code. Again, as covered earlier,

ion: Build a Program Now!

mation in the Project

t tells the form to call the

 to add another that will

rowser removed the

 Web browser. Now you’ll

 Web pages.

another new item to your

e it Navigate.vb.

ternet address and My

rty to SuggestAppend,

 form looks like the one
96 Microsoft Visual Basic 2008 Express Edit

using My.Application.Info gives you quick access to application infor

Designer. Also note that the Click event has a single line of code tha

Close() method.

Now that you’ve added the About dialog box, it should be easy

allow your users to navigate to Web pages.

Adding a Navigate Dialog Box

Deleting the button and the address controls from our simple b

ability to navigate to a Web page. This, of course, is not useful for a

add a dialog box that will give your user another way to navigate to

TO ADD A NAVIGATE DIALOG BOX

1. As you did for the About dialog box and the splash screen, add

project. Using the templates, select a Dialog template, and nam

2. Add a label and a text box to the dialog box:

a. Name the label lblInfoUrl. Set the Text property to Type an In

Own Browser will open it for you.

b. Name the text box txtUrl, set the AutoCompleteMode prope

and set the AutoCompleteSource property to AllUrl.

3. Size and position the controls and the form so that the Navigate

in Figure 6-8.

Figure 6-8
Navigate form

M O R E I N F O
 As you saw if you watched the

object-oriented tutorial movie at

MSDN (go to http://msdn2.

microsoft.com/en-us/beginner/

bb308752.aspx and look at

Lesson 6, Parts 1 and 2), Me

means the current instance of

an object. In this case, this is an

instance of the AboutBox class.

Me is used to access all the public

fields, properties, and meth-

ods defined in the class. In this

example, Me is allowing you to

assign some content to fields that

belong to the AboutBox class,

which are also the fields from the

AboutBox form. Remember that

everything in .NET is an object—

fields in a form are members of

a class, and a form instance is an

object.

M O R E I N F O
 A dialog box is often a modal

form. It has a predefined behav-

ior in which the user can’t click

anything other than controls on

that form: the OK and Cancel but-

tons or the red X button to close

the form. This means that until

the dialog box is closed, the user

won’t be able to click anything

else in the application. To under-

stand what’s happening here, just

think about the Print dialog box

in Microsoft Word: once it is dis-

played, you can’t return to your

document to make any changes

while the Print dialog box is

open. That’s because the Print

dialog box is a modal form.

97
Chapter 6: Modifying Your Web Browser

You’ve set some of the autocomplete properties of the text box to behave the same way

they do in Windows Internet Explorer. This means the text box will suggest and append URLs

based on the letters the user types. You’ll now wire this form to the application using a new

menu called Navigate.

TO WIRE THE FORM TO THE APPLICATION USING THE NAVIGATE MENU

1. Return to the Browser form in Design view, and look at the top of the Browser form. You

already have a menu strip with the Help menu; now add a new menu to your menu strip

by clicking beside the Help menu and typing &Navigate. The & in front of the N will cre-

ate an underscored N so that the user can press the keystroke combination Alt+N to fire

the Click event on the Navigate menu.

2. You’ll see that the Navigate menu shows up to the right of the Help menu. To move a

menu, simply select it, and drag it where you want. In this case, drop it to the left of the

Help menu.

3. Before adding the code for the event itself, you need to add an important line of code.

Remember that in Visual Basic everything is an object, and if you want to manipulate

another form and exchange data between the two forms, you first need to create an

object of that type that is visible to your main form (the Browser form)—in this case,

an object of type Navigate. Create an instance of the Navigate form outside the source

code of any event handler by writing the following line of code in Browser.vb:

Dim NavigateWindow As New Navigate()

Look at Figure 6-9 to see where to insert it.

Figure 6-9
Creating a new instance of the form Navigate

ion: Build a Program Now!

an write code to

’s exactly what will

s the OK button with a

 specified URL. Also note

 to make sure it’s empty

e NavigateToolStrip-

 event handler:

hen

ld resemble Figure 6-10
98 Microsoft Visual Basic 2008 Express Edit

Now that you have an instance of the Navigate form class, you c

exchange data back and forth between the two forms. And that

happen. When the Navigate form is displayed and the user click

URL in the text box, the WebBrowser control will navigate to the

that the URL text box will be cleared after navigating to the URL

the next time the user accesses it.

4. On the Browser form, double-click the Navigate menu to add th

MenuItem_Click event handler.

5. Add the following code to the NavigateToolStripMenuItem_Click

If (NavigateWindow.ShowDialog() = Windows.Forms.DialogResult.OK) T

 Me.myBrowser.Navigate(NavigateWindow.txtUrl.Text)

End If

NavigateWindow.txtUrl.Text = ““

6. Build and execute the application by pressing F5. The form shou

when the user selects the Navigate menu and enters a URL.

Figure 6-10
Execution of My Own Browser using the Navigate form with auto-
complete

M O R E I N F O
 It’s important for you to start

learning how to test your own

code by doing what’s known as

black box testing. At a high level,

this consists of testing what the

user can do and what is presented

to the user. This means you need

to test every little detail in the

UI as well as the situations the UI

offers to the user. When you per-

form a task such as this, I suggest

you create a spreadsheet that

contains a matrix of all the test

cases. Then fill it in as you test.

This will give you a visual repre-

sentation of all tests and features.

You’re now doing this manually

because your application is small

in scope, but you’ll quickly real-

ize that with a bigger application

or an application you might sell,

you’ll need some sort of auto-

mated mechanism to make sure

the tests are all executed and that

you’re not forgetting any. You’ll

then require a UI testing tool, and

in most situations you’ll need to

build your own tools. But that’s

out of context for this book; I just

wanted to emphasize the impor-

tance of testing your application.

99

iner example in Outlook
Chapter 6: Modifying Your Web Browser

7. Now, test the application with all the modifications you’ve made. Verify every new

aspect:

Does pressing Alt+N take you to the Navigate form? ■

Can you hit Cancel with/without content? ■

Can you navigate to a good URL/bad URL? ■

Is the text box empty when you return to the Navigate form (that is, after you’ve per- ■

formed all the other steps and pressed Alt+N)?

Having a Professional Look and Feel at Your Fingertips

In the following sections, you’ll continue to add functionality to your browser using com-

ponents that you might have seen in other Microsoft applications. You’ll add appealing and

professional touches to your application quickly and easily.

Adding a Tool Strip Container and Some Tools

A tool strip container is a new control that ships with Visual Basic 2008, and with it your

users can customize your application like they customize the toolbars in Microsoft Office

Outlook or Microsoft Office Word. The tool strip container has five panels, one on each side

of the screen, and a content panel in the middle. You can have all of them on the

screen enabled at one time or choose them selectively at design time. You can

also control them with source code. You can put a tool strip and a menu strip in a

tool strip container at design time, and at run time your users have the opportu-

nity to arrange their workspace the way they like. The tool strip container gives

your application the same look and feel as Outlook (see Figure 6-11). For instance,

I was able to put two tool strips on the left of my screen. This means those tool

strips are embedded in the tool strip container’s left panel. But I could easily
Figure 6-11
Tool strip conta

ition: Build a Program Now!

 With a tool strip container,

enu strips, which is a great

ace.

Fill in Form.

 it didn’t disappear. The

under the tool strip

wser form.

 you solve this problem

familiar with previous

efore but only for HTML

08, it has been extended

he Document Outline

 Windows, Document

u manage all the controls

 arranged on the screen

ol. For instance, right now

t if you display the Docu-

bBrowser control is at the

tainer (see Figure 6-12). To

ntrols are displayed, follow

rol called

ent panel called
100 Microsoft Visual Basic 2008 Express Ed

move any visible toolbar back to the top, the right, or the bottom.

you give your users control of the layout of their tool strips and m

feature to have.

TO ADD A TOOL STRIP CONTAINER

1. Drag a tool strip container onto the Browser form’s design surf

2. Rename toolstripcontainer1 to mainFormToolStripContainer.

3. Use the Smart Tag from the tool strip container to select Dock

Wait a minute...where is the WebBrowser control? Don’t worry,

control’s z-order has changed. The WebBrowser control is visually

container, and its parent is not the tool strip container but the Bro

The Document Outline window is a valuable tool that can help

and save you a lot of time. For those of you

versions of Visual Studio, this view existed b

and ASPX documents. With Visual Studio 20

to Windows Forms applications. To display t

window in your IDE, simply click View, Other

Outline, or press Ctrl+Alt+T. This view lets yo

on your form. It shows how the controls are

and which controls belong to another contr

you cannot see the WebBrowser control, bu

ment Outline window, you’ll see that the We

same level as the newly added tool strip con

rearrange the order and change how the co

the next two steps.

TO REARRANGE THE ORDER OF CONTROLS

1. In the Document Outline window, select the WebBrowser cont

myBrowser, and drag it just below the tool strip container cont

N O T E
 The z-order is the control’s posi-

tion relative to the other win-

dows or controls on the screen;

think of it as the third dimension

or as being on top of or beneath

other controls.

Figure 6-12
The Document Outline window for the My Own Browser project

101

M O R E I N F O
 If your application design

demands it and if you want to

constrain the user in any way, you

can also hide panels and prevent

users from docking any tool strip

or menu strip in a panel. Let’s

use the current application as an

example. If you want to do this,

select the tool strip container

control named mainFormTool-

StripContainer. You can select it

from either the Properties win-

dow or the Document Outline

window. Then modify the visible

property of the panel you want

to hide. For instance, if you would

like to hide the bottom panel, set

the BottomToolStripPanelVisible

property to false.
Chapter 6: Modifying Your Web Browser

mainFormToolStripContainer.ContentPanel. (When you drag the WebBrowser control, a

black line indicates where the control will be dropped if you release the mouse button.)

2. Now display the form again. The WebBrowser control is in the middle of the form. But

as you can see, the MenuStrip control is not in the tool strip container. Repeat step 1 for

the MenuStrip control, but instead of dropping it in the content panel, drop it in the top

panel of the tool strip container (mainFormToolStripContainer.TopToolStripPanel).

Now the only thing missing from the new menu strip is a dotted grip like the one shown

earlier in Figure 6-11. Without this grip, a user is unable to select the menu strip at all; it is

fixed in the top panel.

TO ADD A DOTTED GRIP TO THE MENU STRIP

1. In the Document Outline window, select the menu strip called msBrowser, go to the

Properties window, and set the GripStyle property to Visible.

2. Run the application by pressing F5. Move the menu strip from one panel to the other.

You now have an application as cool as Outlook.

Adding a Status Bar to Your Browser

Your application is becoming rich in features, but to get it closer to most Windows appli-

cations, you need a status bar to report information about what’s going on at any moment

during the execution. To accomplish this in your browser, you’ll add a StatusStrip control, and

within this status strip, you’ll add a progress bar.

TO ADD A STATUSSTRIP CONTROL AND A PROGRESS BAR

1. On the form Browser.vb, click the bottom panel handle to expand it. (Note that the

glyph arrow direction reverses when you click it.) The tool strip container’s bottom panel

appears as a blue strip.

2. Drag a StatusStrip control to the tool strip container’s bottom panel. After you drop it

onto the bottom panel, it should expand to cover the whole panel surface.

ition: Build a Program Now!

.

 Professional. This will allow

erating system colors. For

 bar will be blue as well.

w of the Status Strip Add

Status.

bel control.

 user, they usually bring

execution. Think of it like

the mail has arrived. This

e to learn that it’s your

es along with the event.

 to configure your appli-

lope) when events are

rammatically by writing

king its title bar. Look in

ed, and click the Events

ad event, and double-click

oad event is raised just

 change properties that

 the status message label
102 Microsoft Visual Basic 2008 Express Ed

3. Rename the StatusStrip control from StatusStrip1 to sscBrowser

4. Change the RenderMode property of the StatusStrip control to

the application to present a status bar to the user using the op

instance, if the themes in Windows XP are blue, then the status

5. Add a label control to the status strip by clicking the down arro

control button and then selecting StatusLabel.

6. Rename the control from ToolStripStatusLabel1 to lblApplication

7. Add a progress bar to your status strip just as you did for the la

8. Rename the control from ToolStripProgressBar1 to pbStatus.

When the status strip and the progress bar are displayed to the

important information about the events that are occurring during

a letter arriving at your house. You hear the mail truck and realize

is the event that is raised. You open your mailbox and the envelop

credit card bill. The bill is one of the pieces of information that com

To analogously populate the controls in the status strip, you’ll have

cation to extract this information from all controls (that is, the enve

happening (that is, the mail truck arriving). And you’ll do that prog

code in event handlers.

TO POPULATE CONTROLS WITH INFORMATION

1. On the design surface, select the My Own Browser form by clic

the Properties window to make sure the Browser form is select

button (yellow lightning) in the Properties window. Find the Lo

it to open the default event handler: Browser_Load. (The form L

before the form is displayed to the user, so, it’s a good place to

affect the visual aspects of a form.)

2. Add the following code to the event (Browser_Load) to modify

(lblApplicationStatus) in the status strip:

Me.lblApplicationStatus.Text = “Ready”

103
Chapter 6: Modifying Your Web Browser

You’ll now attach some code to the progress bar and modify the label on the status strip

to indicate to where the user is navigating. When the page is fully downloaded to the

client PC, you’ll reset the label content in the status strip to the word Ready. You’ll also

modify the browser title to include the URL to where the user navigated. Whenever the

OK button is clicked in the Navigate form, the WebBrowser control named myBrowser

raises the Navigating event. That’s where you’ll start writing code.

3. Select the myBrowser control, and then go to the Events list in the Properties window.

Double-click the Navigating event, and enter the following code:

‘ Modifying the label in the status strip with the URL entered by the user

Me.lblApplicationStatus.Text = “Waiting for: “ + e.Url.Host.ToString()

Once the user enters a URL and the document is being downloaded, the progress bar will

need to update. Periodically, the WebBrowser control raises the ProgressChanged event.

That’s where you’ll update the progress bar in the status strip.

4. Make sure you have the myBrowser control selected in the Properties window, and then

go to the Event list. Double-click the ProgressChanged event. Enter the following code

(look at the comments to understand the source code):

 ‘ The CurrentProgress variable from the raised event

 ‘ gives you the current number of bytes already downloaded

 ‘ while the MaximumProgress is the total number of bytes

 ‘ to be downloaded

 If e.CurrentProgress < e.MaximumProgress Then

 ‘ Check if the current progress in the progress bar

 ‘ is >= to the maximum if yes reset it with the min

 If pbStatus.Value >= pbStatus.Maximum Then

 pbStatus.Value = pbStatus.Minimum

 Else

 ‘ Just increase the progress bar

 pbStatus.PerformStep()

 End If

 Else

 ‘ When the document is fully downloaded

 ‘ reset the progress bar to the min (0)

 pbStatus.Value = pbStatus.Minimum

 End If

ition: Build a Program Now!

ill raise the DocumentCom-

ds to be updated to the

will need to change to the

ted event. Then add the

 the

ing

String()

ring()

 the About dialog box and

ds.

 a working progress bar,

modified title window and

dding some icons

ou’ll have a working

d—maybe not with all the
104 Microsoft Visual Basic 2008 Express Ed

When the user’s document is fully downloaded, the browser w

pleted event. When this event is raised, the application title nee

current URL, and the application status label in the status strip

Ready state.

5. In the myBrowser event list, double-click the DocumentComple

following code to it:

‘ The validation below is necessary because of asynchronous calls

‘ browser is making. We need to make sure it’s really done render

‘ the page.

If ((Not (myBrowser.IsBusy)) And (myBrowser.ReadyState = _

 WebBrowserReadyState.Complete)) Then

 ‘Get Application title using the My namespace

 If My.Application.Info.Title <> ““ Then

 Me.Text = My.Application.Info.Title + “ - “ + e.Url.Host.To

 Else

 ‘If the application title is missing,

 ‘use the application name, without the extension

 Me.Text = System.IO.Path.GetFileNameWithoutExtension(_

 My.Application.Info.AssemblyName) + “ - “ + e.Url.Host.ToSt

 End If

 Me.lblApplicationStatus.Text = “Ready”

End If

As you can see, this source code is similar to what you used for

the splash screen. It uses the My namespace classes and metho

6. Save all the files, and run the application now. You should have

and all the new information should be displayed, meaning the

status strip label.

Personalizing Your Application with Windows Icons

In this section, you’ll continue to personalize your browser by a

that come from known Microsoft applications. After this section, y

Internet browser with most navigational features fully implemente

105
Chapter 6: Modifying Your Web Browser

functionality of Internet Explorer, but you should be proud of yourself. Look at Figure 6-13 to

see what you will have accomplished after this section.

Figure 6-13
Your browser after completing this section

As you can see, you’ll implement a nice list of features in this section. Here’s what you’re

going to accomplish:

Link all buttons to browser functionalities ■

Manage the Go button and the Enter key on the Address text box in the tool strip ■

Change the Browser form icon to the same globe icon you’ve set for the application icon ■

on the hard disk

ition: Build a Program Now!

also add the code to

 it before writing the

e correct variable names,

ER

elow the menu strip.

 the Document Outline

 strip container that is

 drop-down list, add

fresh, tsbHome, and

rty of the ToolStripButton

rd disk for the icon. Or you

ou’ll then have the same

images for these buttons

 installed your companion

Style, and set it to

member to change all

w easy it is to add the

ll designed by providing

one button after the other,

nt, add the code shown for
106 Microsoft Visual Basic 2008 Express Ed

First you’ll add two new tool strips and all their buttons. You’ll

handle all those new buttons. Each time you add a button, rename

event-handling code. You should do this to make sure you have th

which is just a matter of consistency and good practice.

TO ADD TOOL STRIPS AND BUTTONS TO YOUR BROWS

1. Start by adding two new tool strips to the Browser form right b

Name the first one tsIcons and the other one tsNavigation. Use

window to make sure they are under the top panel of the tool

mainFormToolStripContainer.TopToolStripPanel.

2. Select the tsIcons tool strip. Then, using the Add Tool Strip Item

six buttons, and name them tsbBack, tsbForward, tsbStop, tsbRe

tsbSearch.

3. To modify the image for each button, change the Image prope

control by clicking the ellipsis button (...) to browse on your ha

can right-click the icon in the tool strip and select Set Image. Y

dialog box to import the image files from your hard disk. The

are all located in the Images folder under Chapter6 where you

content.

4. For the tsbSearch button, right-click the button, select Display

 ImageAndText.

5. Modify the Text property of the tsbSearch button to Search. Re

your other controls to meaningful names as well.

6. For each button, add the respective functionality. (You’ll see ho

desired functionality because the WebBrowser control was we

methods for the most important functionalities.) Double-click

and you’ll get to the Click event for each one. In each Click eve

the buttons in Table 6-1.

T I P
 I suggest you rename your but-

tons immediately when you add

them to make sure the event-han-

dling code has the correct name.

It is possible to rename the but-

tons later, but it’s more tedious

because you have to perform

extra steps, which takes more

time. It’s just easier, cleaner, and

faster to do it as soon as you cre-

ate the controls.

107
Chapter 6: Modifying Your Web Browser

Button Name Event Code

tsbBack myBrowser.GoBack()

tsbForward myBrowser.GoForward()

tsbStop myBrowser.Stop()

tsbRefresh myBrowser.Refresh()

tsbHome myBrowser.GoHome()

tsbSearch myBrowser.GoSearch()

Table 6-1
Button Code

7. Run the application, and determine whether the buttons are working. Everything should

be working except for the navigation buttons.

You’ll now modify the behavior of the two navigation buttons in the tsbIcons tool strip to

make sure they’re enabled only when they should be—that is, when there are pages in the

browser’s history. When you start the application, the buttons should be turned off. The best

place to put this code is the Load event of the Browser form. It’s a good place because the

event will happen right before the user actually sees the form. Next, you need to think about

where you should put the code that will enable and disable the two navigation buttons. The

ideal place for the validation code is where the navigation occurs because you know at that

moment the browser will navigate to a new URL.

TO MODIFY THE BEHAVIOR OF NAVIGATION BUTTONS

1. In Browser.vb, modify Browser_Load and myBrowser_Navigating to look like the following:

Private Sub Browser_Load(ByVal sender As System.Object, ByVal e As

 System.EventArgs) Handles MyBase.Load

 ‘ Disabling both navigation buttons in the Icons tool strip

 Me.tsbBack.Enabled = False

 Me.tsbForward.Enabled = False

 Me.lblApplicationStatus.Text = “Ready”

on: Build a Program Now!

l e As System.Windows.

y the user

ring()

rrectly now.

strip as you did for the

ol strip buttons, you’ll

ecified in the text box

ng the Go button to

TRIP

ool strip, and add

n. Name the controls
108 Microsoft Visual Basic 2008 Express Editi

End Sub

Private Sub myBrowser_Navigating(ByVal sender As System.Object, ByVa

Forms.WebBrowserNavigatingEventArgs) Handles myBrowser.Navigating

 ‘ Add the code to enable or disable whenever there are URLs

 ‘ in the browsing session’s history

 If myBrowser.CanGoBack Then

 tsbBack.Enabled = True

 Else

 tsbBack.Enabled = False

 End If

 If myBrowser.CanGoForward Then

 tsbForward.Enabled = True

 Else

 tsbForward.Enabled = False

 End If

 ‘ Modifying the label in the status strip with the URL entered b

 Me.lblApplicationStatus.Text = “Waiting for: “ + e.Url.Host.ToSt

End Sub

2. Run the application to determine whether the buttons behave co

Next, you’ll add the names and controls to the tsNavigation tool

previous tool strip. However, this time instead of just adding some to

add different types of controls.

For instance, you’ll modify the browser to navigate to the URL sp

when the user presses Enter. You’ll also modify the behavior of clicki

make sure it does the same thing.

TO ADD NEW CONTROLS TO THE TSNAVIGATION TOOL S

1. Use the Add Tool Strip Item drop-down list on the tsNavigation t

the following controls to the tool strip: label, text box, and butto

 tslblAddress, tstbUrl, and tsbGo.

2. Use Table 6-2 to set the properties of the controls.

109
Chapter 6: Modifying Your Web Browser

Control Name Type Properties Value

tslblAddress ToolStripLabel Text Address:

tstbUrl ToolStripTextBox Size:Width 350

tsbGo ToolStripButton Text Go

tsbGo ToolStripButton DisplayStyle ImageAndText

tsbGo ToolStripButton Image Go.bmp

Table 6-2
Navigation ToolStrip Controls and Properties

The tsNavigation tool strip is not a dialog box with an OK button or a Cancel button, so

you cannot use the AcceptButton or CancelButton property. Therefore, you need to capture

another event that will be triggered whenever the user presses Enter.

The KeyUp event is triggered whenever the user releases a key. For instance, whenever

the user types a letter, he presses the key of the desired letter. When he releases the key, the

KeyUp event is triggered. The code you’ll add in the next exercise will determine whether the

key the user just released was the Enter key. If it was, a new method called NavigateToUrl will

accept a string representing the URL as a parameter and navigate to the URL.

You’ll use the same method for the Go button. When you develop an application, you

never want to duplicate two pieces of code that differ only by a literal. You always want to

reuse the source code whenever possible. The way to do that is to create methods that are

generic enough to be used by more than one component. Since the NavigateToUrl method

has only one line of code, you might be tempted to say that if it’s almost the same one line

of code, why use a method? The answer is simply that in the future you might have to add

some validation. If that one line of code is repeated throughout the source code, you’ll have

to update it in multiple places. However, if there is only one place where you have to modify

the code, your solution is less prone to errors and a lot less tedious.

TO CONFIGURE THE BROWSER TO NAVIGATE TO THE URL

on: Build a Program Now!

 the KeyUp event. The

 released the Enter key

e same code in more

igateToUrl method.

 System.Windows.Forms.

dd the following code to

ToUrl method.)

ystem.EventArgs) Handles

Click event. You simply

s shown here:

ct, ByVal e As System.

en
110 Microsoft Visual Basic 2008 Express Editi

1. Select the tstbUrl tool strip text box.

2. In the event list in the Properties window for tstbUrl, double-click

following is the code to determine whether the user pressed and

and also the method NavigateToUrl that will enable you to use th

than one place. Add this code to tstbUrl_KeyUp and add the Nav

Private Sub tstbUrl_KeyUp(ByVal sender As System.Object, ByVal e As

KeyEventArgs) Handles tstbUrl.KeyUp

 ‘ e is of type KeyEventArgs and contains all the

 ‘ information that triggered the event. The KeyCode

 ‘ is one those information.

 If e.KeyCode = Keys.Enter Then

 Me.NavigateToUrl(tstbUrl.Text)

 End If

End Sub

Private Sub NavigateToUrl(ByVal Url As String)

 Me.myBrowser.Navigate(Url)

End Sub

3. Double-click the Go button on the tsNavigation tool strip, and a

the tsbGo_Click event procedure. (Notice that this is the Navigate

Private Sub tsbGo_Click(ByVal sender As System.Object, ByVal e As S

tsbGo.Click

 Me.NavigateToUrl(tstbUrl.Text)

End Sub

You can now modify another piece of code, the Navigate menu

have to modify the code so that it calls the NavigateToUrl method, a

Private Sub NavigateToolStripMenuItem_Click(ByVal sender As System.Obje

EventArgs) Handles NavigateToolStripMenuItem.Click

 If (NavigateWindow.ShowDialog() = Windows.Forms.DialogResult.OK) Th

 Me.NavigateToUrl(NavigateWindow.txtUrl.Text)

 End If

 NavigateWindow.txtUrl.Text = ““

End Sub

N O T E
 By the way, more than one event

is being triggered by pressing the

Enter key, but the one that you’ll

trap is the KeyUp event.

111
Chapter 6: Modifying Your Web Browser

TO MODIFY THE BROWSER FORM ICON

Finally, you’ll modify the Browser form’s icon so that the user sees a globe when the

browser is running or minimized:

1. Select the Browser form, and then look for the Icon property in the Properties window.

If you see only events in the Properties window, click the Properties button at the top of

the Properties window. Click the ellipsis button (...) to browse for the globe.ico file in the

Chapter6 directory in the Images folder under the Chapter6 directory.

The result of your hard labor is the finished product—the My Own Browser application,

as shown in Figure 6-14.

Figure 6-14
Finished product—the My Own Browser application

n: Build a Program Now!

o refresh it and make

g the new Windows

lication so that you can

o Figure 1-1 in Chapter

 that WPF was added

it? WPF is a unified pro-

ows applications that

alled DirectX, which is

and other graphical-

X is not easy, and WPF

m. With WPF, you have

ur computer instead of

 come up with high-

 in big Hollywood

ssible. For instance,

er innovative explorer

nating to see how

ime how far it is from

eos on the Mix07 Web

e implementation of a

itmix.com/default.asp?

search=UNI19.
112 Microsoft Visual Basic 2008 Express Editio

Now that you have enriched your browser application, it is time t

it look like a Windows Vista application. To do that, you’ll start learnin

Presentation Foundation (WPF). You’ll work on the same browser app

focus only on the new topics at hand.

Windows Presentation Foundation

What is WPF? First let’s look at where it came from—if you refer t

1, “Introducing Microsoft Visual Basic 2008 Express Edition,” you’ll see

with the arrival of .NET 3.0 and shipped with Windows Vista. What is

gramming model that allows developers and designers to build Wind

incorporate rich media (sound, video, and so on) and documents.

WPF uses your graphical processing unit (GPU) via a technology c

a software platform and technology that was used mostly for games

intensive applications. Programming applications directly with Direct

uses the capabilities of DirectX without the need for you to learn the

the ability to develop richer applications by using the full power of yo

relying only on your central processing unit (CPU).

With WPF, developers and designers are able to work together to

quality applications; you probably have seen what WPF will let you do

productions such as The Net, Sneakers, Disclosure, 24, or Mission Impo

do you remember in Disclosure the virtual glove database with its sup

software? Or how advanced the e-mail software was? It’s always fasci

Hollywood is using software and how good it looks but at the same t

reality. Well, it’s now a reality because of WPF.

Before we dig into the technicalities, I invite you to look at the vid

site that showcase WPF capabilities. Specifically, take a look at this nic

kiosk-based application for a well-known company: http://sessions.vis

event=1016&session=2017&pid=UNI19&disc=&id=1620&year=2005&

Redoing the Browser

N O T E
There are a few differences

between WPF on Windows Vista

and WPF on earlier versions of

Windows. The following two

features are unique to Windows

Vista: 3D objects get antialiasing

only on Windows Vista or newer,

and nonrectangular or translu-

cent windows get hardware accel-

eration (from your graphic card’s

GPU) only on Windows Vista or

newer.

M O R E I N F O
 Many other videos and presenta-

tion and learning tools are avail-

able from the same Web site. See

http://sessions.visitmix.com/.

113
Chapter 6: Modifying Your Web Browser

WPF and XAML

Extensible Application Markup Language (XAML), pronounced “zammel,” is a use of XML

that enables declarative programming in WPF. It is called declarative programming because,

by using XAML, the developer can define the user interface declaratively, similar to how an

XML file describes a document format. It is a programming language because you can create

.NET objects by simply using XAML. A good analogy is the new Office 2007 document for-

mat that uses XML to describe the structure and formatting of your Word 2007 documents,

for instance.

XAML enables something that was really difficult previously: designers and developers

working together on the same project. With Visual Studio and Microsoft Expression products

such as Microsoft Expression Blend, designers can work on the design and the user interface

and then pass them on to the developers so that they can write the code. The video refer-

enced previously is a good example of how these separate activities can come together.

Using XAML simply helps separate the front end, or user interface, from the back end,

or business logic. I don’t want to get too deep into XAML at this point because that’s not

the purpose of this book, but we’ll start by looking at how XAML defines real .NET objects.

Here’s how a button is declared in XAML:

<Button xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” Name=”btnGo”>Go</

Button>

If you place this code in a file called foo.xaml and then fire up Internet Explorer and

open the file, you’ll see a big button that takes the entire surface, but it’s a real WPF but-

ton. You don’t need to compile the code, and it works. Isn’t that great? This means you can

write applications that define your interface and then add events such as the Click event and

have the code in a separate Visual Basic file; however, it also means it can’t run by itself in a

browser. It would look like something this:

<Button xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation” Name=”btnGo”

Click=”btnGo_click”>Go</Button>

So, you now see clearly the separation between the user interface definition and the

business logic of your application.

ion: Build a Program Now!

ole application here;

uced set of features. In

ser events so that it

oject. Select the WPF

e it MyOwnWpfBrowser.

K to create the project.

r in a split view on your

You’ll also notice that the
114 Microsoft Visual Basic 2008 Express Edit

TO CREATE A WPF VERSION OF THE BROWSER

This is an introduction to WPF, so we won’t reimplement the wh

instead I’ll show parts of the Web browser application but with a red

fact, we will implement almost the same version as in Chapter 4.

You’ll first define the interface, and then you’ll hook up the brow

actually works:

1. Add a new project to your solution by clicking File, Add, New Pr

Application template from the Visual Studio templates, and nam

Your screen should look like the one in Figure 6-15. Then click O

You should now have the new designer surface and XAML edito

screen. Look at Figure 6-16 for the new WPF design experience.

Properties window has changed quite a bit.

Figure 6-15
Adding the WPF browser project to your solution

W A R N I N G
The goal here is to show how

you would create an application

in WPF, but Windows Forms is

still easier to use and the way

to go—unless you are willing to

spend some time learning WPF

concepts, learning XAML, and

working more with the code.

115

M O R E I N F O
 You can see that this view is

rather different. The view is split

between Design view at the top

and Code view at the bottom.

In the bottom part you see the

XAML representation of what

you see on the design surface.

It’s a real-time representation, so

if you modify either view, you’ll

see the change immediately rep-

licated in the other. Figure 6-16

shows the horizontal view, but

if you click the vertical glyph on

the top-right corner of the XAML

window, you’ll see the screen

split in vertical halves instead of

horizontal ones. It’s a matter of

preference which one you use.
Chapter 6: Modifying Your Web Browser

Figure 6-16
The new WPF split view design surface and XAML editor

2. Next you’ll change the title of this new browser window and change the Window variable

name. To do this you’ll change the XAML directly. Go to the XAML editor, and change

the Title attribute of the Window element to My Own WPF Browser. As you do this, look

in Design view to see your change being applied in real time. Then change the Window

variable name by changing the Class attribute to Browser. The XAML should look like the

following at this point:

<Window x:Class=”Browser”

 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

 Title=”My Own WPF Browser” Height=”300” Width=”300”>

 <Grid>

 </Grid>

</Window>

on: Build a Program Now!

ml, and in the

e Window element

ght and Width proper-

dow (width by height).

ML code changes in real

e power of your graphic

ign surface to adjust the

e window (even if it’s

ays the great capabilities

igure 6-17, for example:

 WPF, and on the right

 Windows form’s title

. On the left side you

t the title bar characters

y don’t have a jagged

ssible because WPF

because everything is

 your design surface.

ms project. In Solution

wser project, and select

Solution Explorer, and

 Enter just before the >

WPF browser execute

ur project. In Solution
116 Microsoft Visual Basic 2008 Express Editi

3. In Solution Explorer, rename the file Window1.xaml to Browser.xa

Browser.xaml.vb file change the name of the class to Browser.

4. Click the designer surface on the title, and make sure you have th

selected in the Properties window. Now delete the values for Hei

ties, and change MinHeight and MinWeight to a 640-by-480 win

You’ll see that Design view will resize in real time and that the XA

time as well.

If you remember, I was telling you that WPF uses DirectX and th

card. Well, a good way to see that is to use the slider on the des

scale and view a really big close-up or zoom out to see the entir

bigger than your monitor). This is a really neat feature that displ

of WPF. Look at F

On the left side is

side is the normal

bar but magnified

can see how grea

look and how the

contour. This is po

uses DirectX and

actually drawn to

5. Save all the files by pressing Ctrl+Shift+S.

6. Now you’ll copy the globe icon file you used in the Windows For

Explorer, right-click the globe.ico file in your Windows Forms bro

Copy. Then right-click your MyOwnWpfBrowser project name in

select Paste.

7. You will now set some more Window properties. To do this, press

in the Window element, and add the following XAML:

Icon=”globe.ico” SizeToContent=”WidthAndHeight”

WindowStartupLocation=”CenterScreen”

8. You have two projects in your solution, so in order to have your

when you press F5, you need to make a small modification to yo

N O T E
 The fact that all of those changes

are in sync everywhere makes it

easier to learn XAML and WPF

because you can see the changes

live. Selecting something on the

design surface will bring the

XAML editor to the correspond-

ing code. So, learning by opening

completed samples from the Web

helps you learn how to reproduce

cool things you see in samples.

Figure 6-17
WPF (left) vs. Windows form (right)

117
Chapter 6: Modifying Your Web Browser

Explorer, right-click the MyOwnWpfBrowser project name, and select Set as StartUp

Project. Your project name should now be in bold to indicate it will be the one to start

when you press F5.

9. This is version 1 of the WPF editor, and some inte-

gration and synchronization between Design view/

Code view and Solution Explorer are not without

bugs. Before you run the project, you need to

modify the project settings. Right-click the project

name (MyOwnWpfBrowser), and select Properties. In

the Properties window, you should see the Applica-

tion tab. Locate the Startup URI drop-down list, and

select Browser.xaml. Save all the files (by pressing

Ctrl+Shift+S).

10. Press F5, and you should get an empty Windows

application “WPF style.” Look at Figure 6-18 to see

what you should see.

You’ll now add the two menu items on top of your

window: the Navigate and Help menus. For the purpose

of this example, we will wire only the Navigate menu.

To wire the Navigate menu to an event handler, you will

add the Click event and then the name of the method

to call when clicked. If you look in the following XAML

code, you might ask what the DockPanel element is; well, it enables you to have easy dock-

ing within an element, in this case the Grid element.

1. Select the Browser.xaml file tab at the top of the editor, and then add the following

XAML code. Replace all the XAML including the opening and closing Grid element. When

you’re done typing the code, save all the files.

<Grid Name=”grid1”>

 <DockPanel x:Uid=”DockPanel_1”>

 <! Menu Bar>

 <Menu x:Uid=”Menu_1” Background=”White” Name=”_MainMenu” DockPanel.

 Dock=”Top”>

Figure 6-18
First view of your WPF browser application

ition: Build a Program Now!

oks like, execute your appli-

the top of the window.

lect the Navigate menu,

ndow, right-click the proj-

w. You’ll get the Add New

ange Window1.xaml to

the following XAML. I’ll

ion”
118 Microsoft Visual Basic 2008 Express Ed

 <! Navigate Menu>

 <MenuItem x:Uid=”NavigateMenu” Header=”_Navigate” />

 <! Help Menu>

 <MenuItem x:Uid=”HelpMenu” Header=”_Help”>

 <MenuItem x:Uid=”AboutMenu” Header=”_About” />

 </MenuItem>

 </Menu>

 </DockPanel>

</Grid>

2. Next build your solution by hitting Ctrl+Shift+B. To see what it lo

cation by pressing F5. You should see your two menus added to

3. Before we can navigate to the Navigate dialog box when we se

we need to add this window to our project. To add this new wi

ect name, MyOwnWpfBrowser, and select Add and then Windo

Item dialog box with the Window (WPF) template selected. Ch

Navigate.xaml.

4. In the Navigate.xaml file, delete the current content, and type

explain what it means afterward.

<Window

 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentat

 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

 x:Class=”Navigate”

 Title=”Navigate”

 Height=”130”

 Width=”500”

 ResizeMode=”NoResize”

 ShowInTaskbar=”False”

 WindowStartupLocation=”CenterOwner”

 FocusManager.FocusedElement=”{Binding ElementName=Url}”>

 <Grid>

 <Grid.Resources>

 <Style TargetType=”{x:Type Grid}”>

 <Setter Property=”Margin” Value=”10” />

 </Style>

 <Style TargetType=”{x:Type Label}”>

 <Setter Property=”Margin” Value=”30,0,5,5” />

119

I M P O R TA N T
 You should see a yellow bar

at the top of Design view as

you’re typing indicating that the

document root element has been

modified. If you want to see the

modification, you need to click

there to reload the designer.

If you do this as you type, you

might not be able to see the end

result immediately.
Chapter 6: Modifying Your Web Browser

 <Setter Property=”Padding” Value=”0,0,0,5” />

 </Style>

 <Style TargetType=”{x:Type TextBox}”>

 <Setter Property=”Margin” Value=”30,0,10,10” />

 <Setter Property=”AutoWordSelection” Value=”True” />

 </Style>

 <Style TargetType=”{x:Type StackPanel}”>

 <Setter Property=”Orientation” Value=”Horizontal” />

 <Setter Property=”HorizontalAlignment” Value=”Right” />

 </Style>

 <Style TargetType=”{x:Type Button}”>

 <Setter Property=”Width” Value=”70” />

 <Setter Property=”Height” Value=”25” />

 <Setter Property=”Margin” Value=”5,0,0,0” />

 </Style>

 </Grid.Resources>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width=”Auto” />

 <ColumnDefinition />

 </Grid.ColumnDefinitions>

 <Grid.RowDefinitions>

 <RowDefinition Height=”Auto” />

 <RowDefinition Height=”Auto” />

 <RowDefinition Height=”Auto” />

 </Grid.RowDefinitions>

 <! Label and URL >

 <Label Grid.Column=”0” Grid.ColumnSpan=”2” Grid.Row=”0”>Type an

 Internet address and My Own WPF Browser will open it for you

 </Label>

 <TextBox Name=”Url” Grid.ColumnSpan=”2” Grid.Column=”1” Grid.Row=”1”>

 </TextBox>

 <! Accept or Cancel >

 <StackPanel Grid.Column=”0” Grid.ColumnSpan=”2” Grid.Row=”2”>

 <Button Name=”okButton” Click=”okButton_Click”

 IsDefault=”True”>OK</Button>

 <Button Name=”cancelButton” IsCancel=”True”>Cancel</Button>

 </StackPanel>

 </Grid >

</Window>

ion: Build a Program Now!

ould look like the one in

 it is self-explanatory

ture was new in this part

 which you’ve added

 has the advantage of

al control. Pretend you

edious to set the styles for

inition of Grid.Resources,

llows in the XAML code

ws, and then finally the

retty simple, isn’t it? You

d then you attach the

!

e the Click event on the

e Navigate menu item in

Click” />

View Code. Replace the

l e As
120 Microsoft Visual Basic 2008 Express Edit

You now have a Navigate window in your WPF Designer that sh

Figure 6-19.

Now let’s return to the XAML code. Most of

because of the nature of XAML. But one fea

of the sample: the Grid.Resources element in

styles for all elements found in the grid. This

not having to set the styles for each individu

had 10 text boxes in your grid; it would be t

each text box. Well, because of the style def

you have to set the styles just once. What fo

is the grid layout in terms of columns and ro

content of those columns and rows. That’s p

define your user interface, you actually build it piece by piece, an

functionality in Visual Basic. It’s a clear separation of UI and logic

5. Now, we can’t navigate to this dialog box because we didn’t wir

Navigate menu item. To do this, add a click XAML attribute to th

the Browser.xaml file so that it looks like this:

<MenuItem x:Uid=”NavigateMenu” Header=”_Navigate” click=”Navigate_

6. In Solution Explorer, right-click the Browser.xaml file, and select

content of that file by typing the following VB code:

Imports System.Windows.Forms

Public Class Browser

 Inherits Window

 Public Sub New()

 InitializeComponent()

 End Sub

 Private Sub Navigate_Click(ByVal sender As System.Object, ByVa

 System.Windows.RoutedEventArgs)

 ‘ Instantiate the dialog box

 Dim dlg As New Navigate

Figure 6-19
Navigate dialog box in the WPF Designer

121

O R E I N F O
or more information, read

he following article on MSDN:

ttp://msdn2.microsoft.com/

n-us/library/ms751761.aspx.
Chapter 6: Modifying Your Web Browser

 ‘ Configure the dialog box

 dlg.Owner = Me

 ‘ Open the dialog box modally

 dlg.ShowDialog()

 ‘ Process data entered by user if dialog box is accepted

 If (dlg.DialogResult.GetValueOrDefault = True) Then

 NavigateToUrl(dlg.Url.Text)

 End If

 dlg.Url.Text = ““

 End Sub

 Private Sub NavigateToUrl(ByVal Url As String)

 Dim host As New System.Windows.Forms.Integration.WindowsFormsHost()

 Dim browserControl As New System.Windows.Forms.WebBrowser()

 host.Child = browserControl

 Me.grid1.Children.Add(host)

 browserControl.ScrollBarsEnabled = True

 browserControl.Navigate(Url)

 End Sub

End Class

You’ll see that the compiler is reporting a few errors. Those errors are there because of a

code construct in that file that indicates they are Windows Forms elements. Another

possibility is that they are not defined. So, we need to add the references in our project

to remove the Windows Forms errors. Not all controls were developed for version 1 of

WPF, and you might also have done some investment in Windows Forms that you want

to reuse as-is. For that, the .NET Windows client team has developed a class to integrate

Windows Forms elements: WindowsFormsHost. As you can see in the previous code, we

have wrapped the WebBrowser control in an instance of the WindowsFormsHost class. By

doing this, we enabled the control to execute in a WPF application as if it were a real

WPF control. In fact, that is the role of this class. Then by adding the browserControl

element to the Grid element as a child, the WebBrowser control becomes embedded in

the grid as any regular WPF control.

M
 F

t

h

e

on: Build a Program Now!

indows.Forms from the

WpfBrowser project

ll have to do the opera-

lution.

dler is not implemented

d type the following

As

ication.

e won’t implement more

to show how different

s for beginner develop-

o use WPF—quite the

d in this book. When

at the same time, one

 proficient in WPF, and
122 Microsoft Visual Basic 2008 Express Editi

7. To remove the errors, let’s add WindowsFormsHost and System.W

.NET tab in the references for our project. Right-click the MyOwn

name, and then select Add Reference. Add both references. You’

tion twice. Once you’re done, save all the files, and build your so

8. You should have only one error left. The okButtonClick event han

yet. Select the Navigate.xaml.vb tab, delete all lines in that file, an

Visual Basic code:

Public Class Navigate

 Inherits Window

 Public Sub New()

 Me.InitializeComponent()

 End Sub

 Private Sub cancelButton_Click(ByVal sender As Object, ByVal e

 RoutedEventArgs)

 ‘ Dialog box canceled

 Me.DialogResult = False

 End Sub

 Private Sub okButton_Click(ByVal sender As Object, ByVal e As

 RoutedEventArgs)

 MyBase.DialogResult = New Nullable(Of Boolean)(True)

 End Sub

End Class

9. Save all the files, build your solution, and then execute your appl

You should have a functional Web browser developed in WPF. W

of the Web browser in WPF in this chapter because the goal was

the development approaches are and how a bit more tedious it i

ers to develop in WPF. Nevertheless, I am not discouraging you t

opposite. I invite you to develop your first applications like we di

you develop an application for learning purposes, develop both

in Windows Form and one in WPF. That way you’ll become more

you can then go to more advanced topics.

N O T E
 The sample WPF browser you just

created was done this way for

learning purposes. If you do real

development in WPF, there are

a set of best practices to follow

that would enable you to have

your application translated for

different languages. Other design

principles apply to the best prac-

tices, so if you go on to develop

applications commercially in

WPF, please read MSDN for all

those best practices.

123
Chapter 6: Modifying Your Web Browser

In Summary…

In this chapter, you took a simple application and upgraded it to create a professional-

looking application with many nice features for your users. You learned to add a splash

screen to your application and to work with dialog boxes. You created an About dialog

box and a Navigate dialog box to allow your users to navigate to a URL, and you added an

autocomplete feature to your text boxes and the autosuggest/append feature by using the

browser’s URL history. You then added tool strips, progress bars, and icons from Windows.

You dynamically managed controls, and you learned a lot about new events and how to

handle them using event arguments.

After finishing the Windows Forms implementation, you learned how to add a second

project and created a WPF Web browser. While doing this, you experimented with XAML and

the WPF development technique. You implemented a dialog box that allowed you to enter

a URL and navigate to it. You then learned how to use a Windows Forms control in WPF to

create a hybrid application.

In the next chapter, you’ll learn techniques to use when things don’t go well; that is, you’ll

learn the art of debugging code. You’ll also learn about the Edit and Continue feature, the

new data visualizers, tips and tricks, and much more.

125

evelop an application, you

ime, the process goes like

 (often yours), perform

 bugs, test the product

 of the process; it can be

ds on the complexity of

 on. But this is certain:

Microsoft Visual Basic 2008

er.
7
Debugging an
Application, 126

Chapter 7
Fixing the Broken Blocks

As you’ll discover more and more, when you d

rarely succeed on your first attempt. Most of the t

this: brainstorm on paper, look at the users’ needs

some analysis, prototype, design, develop, test, fix

again, and finally release it. This is a high-level view

much more complicated or simplified. It all depen

the project, the number of people involved, and so

you always need to debug your applications, and

provides many tools to help you fix your bugs fast

n: Build a Program Now!

 applications, I’ve

talled the companion

wing location on your

ok for a folder named

 solution.

irst, the solution has

lications. In this case,

rms application named

). The acronym DLL

 methods that are called

 a main entry point and

same DLL at the same

 yet: a text file. You can

ommon. In this case,

the text file, so to have

r and then change the

 component. In many

have those types in a

face code. Often, the

our application aware of

ence to the library in the
126 Microsoft Visual Basic 2008 Express Editio

To show you how to use the tools and techniques to debug your

created a sample application that you’ll use in this chapter. If you ins

content at the default location, the application should be at the follo

hard disk: Documents\Microsoft Press\VB 2008 Express\Chapter7\. Lo

Debugger Start in the Chapter7 folder. Double-click the Debugger.sln

This solution has several items you have not learned about yet. F

more than one project. This is a common practice in developing app

the solution (named Debugger) contains two projects: a Windows Fo

Debugger and a managed library named MyLibrary (a managed DLL

stands for Dynamic Link Library; a DLL is a library of classes and their

dynamically and as needed by an application. A DLL doesn’t contain

cannot be executed by itself. Also, multiple applications can use the

time.

Second, the project Debugger has a type of file you haven’t seen

have different kinds of files in your projects, and a text file is not unc

one of the methods called by the Debugger.exe application will use

the file in the output folder, you need to select it in Solution Explore

Copy to Output Directory property to Copy If Newer.

Using a DLL in an Application

When you design an application, you usually have more than one

cases, the components are new classes (types). It is good practice to

separate source code file instead of keeping them with the user inter

classes are grouped in a single library or DLL.

When you want to use a type from a library, you need to make y

all the types and methods contained in that library by adding a refer

application.

Debugging an Application

N O T E
 The Debugger program is exclu-

sively for the educational pur-

poses of this chapter. It doesn’t

do anything interesting except

teach debugging.

127

gure 7-1
d Reference menu choice
m the Debugger project
Chapter 7: Fixing the Broken Blocks

TO ADD A REFERENCE TO YOUR APPLICATION

1. Select the project where you want to add the reference; in this case, select Debugger.

2. Right-click Debugger (look at Figure 7-1 to make sure you’re at the right place), and then

select Add Reference.

As you can see from the tabs on the dialog box that appears, references can come from

multiple sources.

3. Select the Projects tab, and then select the MyLibrary project, which contains the man-

aged DLL. Click OK to add the reference to your project.

Because the DLL is in the same solution and you just added a reference to that DLL to

your application, Microsoft Visual Studio now knows there is a dependency between the two

and will always build the DLL first so that your application builds the binary with the most

up-to-date DLL possible.

You can verify that the reference has been inserted in two ways:

Open the Project Designer (by right-clicking the project name in Solution Explorer ■

and choosing Properties), and select the References tab on the left side, as shown in

Figure 7-2.

Click the Show All Files button in Solution Explorer, and expand References. ■

Figure 7-2
Project Designer’s References tab showing
the MyLibrary reference

Fi
Ad
fro

n: Build a Program Now!

. When you’re done

 types that are built in

 linker) will now accept

ew types available via

 more step is required.

ion.vb file. The line

s or programming ele-

 assemblies. By adding

y for the metadata that

ments and be used at

 those items whenever

ualizers

gh the code. If the

t-clicking the TestAppli-

left side of the screen;

he breakpoints.
128 Microsoft Visual Basic 2008 Express Editio

Using one of these methods, you’ll see the reference to MyLibrary

adding the reference, your application can create instances of the new

the DLL and use them appropriately. The build process (compiler and

the use of those new types; however, for Visual Studio to have those n

IntelliSense and for the compiler to know about those new types, one

You might already have seen the first line of code in the TestApplicat

reads Imports MyLibrary.

What the Imports statement essentially does is import namespace

ments, such as new types, that are defined in referenced projects and

this line of code, you’re telling Visual Studio to look into that assembl

will enable IntelliSense to be populated with the public/protected ele

build time by the compiler. After adding this line, you’ll gain access to

you have an instance of one of the types built in the library.

Using Breakpoints, Locals, Edit and Continue, and Vis

There is no better way to dive into this subject than by going throu

TestApplication.vb source code file is not already open, open it by righ

cation.vb file and selecting View Code. You should see red dots on the

those red dots are breakpoints. Figure 7-3 shows the source code and t

Figure 7-3
Source code and breakpoints from the TestApplication Windows form

T I P
 If the breakpoints don’t appear,

you can add them by clicking in

the left margin.

129

kpoint in the Divide method
Chapter 7: Fixing the Broken Blocks

When the debugger encounters a breakpoint, it stops executing the application. In this

source code, one breakpoint is placed on the call to MessageBox.Show(myString). Another

breakpoint appears in Library.vb in the first line of code of the Divide method. In the follow-

ing procedure, you will execute the code and go through a debugging session.

To debug an application, you can do one of the following:

Press F5, or click the Start Debugging button. The program will start executing normally. ■

If there is a breakpoint in the source code, the execution will stop there. Otherwise, the

program will continue to execute unless there is an unhandled exception or error.

Alternatively, you can debug the application by stepping through the code line by line. ■

To do this, press F8, or click the Step Into button.

For now, you’ll jump to the first breakpoint and execute the code in the sample program

using the first technique.

TO BEGIN DEBUGGING AN APPLICATION

1. Press F5, or click the Start Debugging button.

2. You will see a Try Me! button. Click it. The code should stop

executing at the first breakpoint in the Divide method, and you

should see what is shown in Figure 7-4. The yellow highlighted

line indicates the next statement to be executed.

You’re now in debugging mode, so you have access to a plethora

of tools and data elements about your application to help you under-

stand what is happening when your application is executed. You can see the content of local

variables, parameters, exception messages, the console window, and many more items you’ll

discover in the next few pages. All of that information is useful when an application is not

behaving the way it should and you’re trying to understand why. With all the information the

debugger provides, you can try to uncover where the problem lies and see why you have a

bug. You can also use the debugger for learning purposes as you are doing right now. The

debugger is an excellent teacher when you’re new to a technology, when you’re new to a

language construct, or when you’re simply trying to understand a certain element. It is also

Figure 7-4
Execution stopped at the first brea

ion: Build a Program Now!

and it is especially helpful

e debugger while you’re

en, you can see a series

t, and Error List. If you

he View and Debug

g mode. You saw in

ere only to show the

n. While you’re debug-

op and shows the current

If the Locals tab is not

Watch tab by selecting

ok at Figure 7-5 to see

sion.

 four elements of data

ide, numberOne, and

e instance of the current

 parameters. The debug-

ys them on the Locals

m where the instruction

is case, it could be either

xecution of the Divide

e. Now it’s your turn to

e division operation.

 program elements to

 For instance, if you
130 Microsoft Visual Basic 2008 Express Edit

common to use the debugger to understand someone else’s code,

when you need to modify existing code.

You’ll now look at the first series of data elements offered by th

stepping through your code. At the bottom of the Visual Studio scre

of tabs, which can include Locals, Watch, Immediate Window, Outpu

don’t see these tabs, you can open these tabs by selecting them in t

menus. Most of these are not visible when you are working in editin

Chapter 3, “Creating Your First Applications,” that the Error List is th

results of the real-time compilatio

ging, the Locals tab is usually on t

variables and object information.

displayed, you can add it and the

Windows on the Debug menu. Lo

the tabs from your debugging ses

On the Locals tab, you can see

from your Divide method: Me, Div

numberTwo. These are, in order, th

object, the return value for the function named Divide, and the two

ger detects all elements that are in scope in that method and displa

tab. The elements in scope are all the elements that are “visible” fro

pointer (that is, the next instruction to be executed) is located. In th

local variables or shared variables. This means that throughout the e

method, you’ll be able to follow the values that those items will hav

see this for yourself.

TO CONTINUE DEBUGGING THE APPLICATION

1. Press F8, or click the Step Into button. Then press F8 to get to th

While debugging, you can always hover the mouse pointer over

get the information you would otherwise find on the Locals tab.

Figure 7-5
Tabs present during debugging in Visual Studio

131

 the numberOne local variable in two

C A U T I O N
 The Edit and Continue feature

doesn’t work on 64-bit operating

systems.
Chapter 7: Fixing the Broken Blocks

hover your mouse pointer over the numberOne element, you’ll see the

same value that is shown on the Locals tab, as illustrated in Figure 7-6.

2. Execute the next line of code by pressing F8 or clicking the Step Into button.

I’ll now explain what is going on from the compiler’s perspective. On the

Locals tab, the Divide element (the return value of that function) contains

the result of 5 divided by 3, which should be 1.

But why does the debugger show 2? You just found a bug. (Note: I’ve

inserted this error to demonstrate how small mistakes can create bigger

problems.) If you hover the mouse pointer over the / operator, you’ll see

the word double. Press F1, and search for the / operator in Help. You’ll find

that the result produced by this operator depends on the types of the two

operands used in the operation. In this case, the / operator uses two inte-

gers. When you use the / operator with two integers, the result is a double.

The result is the full quotient plus the remainder, or 2.

At the same location in the Help system, you’ll see that the integer division this function

was supposed to use is actually the \ operator.

At this point, you would ordinarily click the Stop Debugging button, but a new feature

in Visual Basic 2008 allows you to modify your code and verify immediately whether

the change you make solves the problem. This feature is called Edit and Continue. As its

name implies, the Edit and Continue feature lets you edit an element in the application

and continue the execution. In fact, not only can you do this, but you can also modify the

next instruction to execute, change the value of a variable, and re-execute the instruc-

tion. This can be a huge time-saver because you don’t have to stop the execution, make

the change, rebuild, and re-execute the new code. You can see the changes right away.

3. Go to the left side, where the yellow arrow indicates the next instruction to be executed.

When you hover your mouse pointer over the yellow arrow, you should see a transpar-

ent arrow indicating you can move the yellow arrow. Click and hold the yellow arrow, and

slide it up and back over the division instruction.

4. Change the / operator to the \ operator, and then re-execute the instruction by pressing

F8 or clicking the Step Into button.

Figure 7-6
Getting the value of
different ways

ion: Build a Program Now!

w has the value 1, which

veloper now!

ge box with 1 for the first

itch to it on the Win-

to the code until you

 pointing at the first

every instruction because

u’ll step out of the code

e execution; stepping

of the current method

t will simply execute it.

e Divide method. Click-

 be gone.

reakpoint by using one

Breakpoint menu choice,

-7 to see this in action.

 press F9.

the only available choice:
132 Microsoft Visual Basic 2008 Express Edit

5. Look at the Locals tab, and you’ll see that the Divide element no

is correct. You’ve just fixed your first real bug; you’re a better de

6. Save your file, and then step into the code until you see a messa

division. If you don’t see the message box, you might need to sw

dows taskbar. Click OK in the message box. Continue stepping in

return to the Divide method with a new set of values and you’re

instruction in the method.

When you’re back to the Divide method, you will not re-execute

you know that the method should now execute correctly. Instead, yo

using the Step Out function. Stepping out doesn’t mean you’ll skip th

out simply means that the debugger will execute all the instructions

and go back to the calling point. If you do it on a single instruction, i

TO STEP OUT OF THE CODE

1. In the Library.vb file, click the red dot at the first breakpoint of th

ing the red dot removes the breakpoint. The red dot should now

2. In addition to clicking the red dot, you can disable the second b

of three other methods:

Right-click the line of code that has the breakpoint, click the ■

and then click the Delete Breakpoint choice. Look at Figure 7

Click the Debug menu, and then select Toggle Breakpoint or ■

Right-click the red dot indicating the breakpoint, and select ■

Delete Breakpoint.

Figure 7-7
Deleting a breakpoint by using a contextual menu in the code editor

N O T E
 There are some limitations to the

edits you can make with Edit and

Continue. To see a complete list

of limitations, simply perform a

search in the Help system with

the following search criteria:

Edit and Continue [Visual Basic].

Then look for the two sections

about unsupported features that

explain what you can’t do.

133

M O R E I N F O
 The Using block in the ReadFile

method guarantees that you’re

going to dispose of the resources

you’re using when you exit the

block delimited by End Using.

You can read more about this by

doing a search in the Help system

by using the Using statement as a

keyword in the Look For text box.

M O R E I N F O
 As you can see in the source code,

one of the ManipulateStrings

arguments, myString, is passed

with the ByRef keyword. When

you have an argument that is

passed to a method by reference,

the called method is receiving a

reference to the same memory

location used by the caller.

Therefore, if the method is modi-

fying the content of that argu-

ment, it is modifying the content

at this memory location and thus

modifying the variable from the

caller. In this case, anything that

is done to the myString argument

will modify the value of the vari-

able in the calling code. The other

argument is myPosition, and it is

passed with the ByVal keyword.

When you have an argument that

is passed by value, the method is

receiving a copy of the variable

from the calling code and thus

can’t modify the original value

from the caller. Therefore, the

content will get lost when the

method ends and the execution

flow returns to the caller.
Chapter 7: Fixing the Broken Blocks

3. You should be at the first line of code in the Divide method. Now that you’re in the Divide

method, you can press Ctrl+Shift+F8 to step out of the Divide method, or you can click

the Step Out button. This will execute all the instructions in that method and return to

the caller.

4. Press F5 to execute all the methods up to the next breakpoint.

You should see another message box with the result 1. Click OK, and then you should be

stopped in the source code of the ReadFile method.

5. The ReadToEnd method reads the content of the open file and puts it into a string vari-

able. Press Ctrl+Shift+F8 and then F8. A message box should display the string variable

content. Click OK in the message box. You should now be back at the caller.

6. Step into the code until you get the string Helloworld in a message box. Pay attention to

the order of execution, and look into the variables and content in each of the tab sections.

7. Click OK in the message box, and then step into the code again to get into the Manipu-

lateStrings method.

The first instruction (apart from the variable declaration) in the ManipulateStrings method

is taking the string received in the argument and converting it to an array of characters. The

reason for converting the string is that strings are immutable in .NET, and therefore you have

to work with them in read-only mode once they’re created. Methods modifying a string are

actually returning a new string object that contains the modification applied to it.

Therefore, if you want to modify a string character by character, or if you want to access

one single character in a string by using an index, you first need to convert the string into an

array of characters.

TO BEGIN STEPPING OUT OF THE MANIPULATESTRINGS METHOD

1. Press Ctrl+Shift+F8 to step out of the ManipulateStrings method, or click the Step Out

button.

The first invocation of the method is fine. At the second invocation, however, the applica-

tion stops abruptly. What just happened is an unhandled exception. An unhandled excep-

tion happens whenever an error occurs that is not anticipated or handled explicitly by your

application. In that case, the execution of your application is halted because there is no way

tion: Build a Program Now!

pting the memory or

to make sure that neither

nt your application from

 taking those precautions,

s still possible.

Visual Studio includes

l because, based on the

bug, including error help-

ive actions that may be

the information provided

s, and the data visualizers,

 exception name alone is

ting tip displayed asks you

rrays in .NET are zero-

gth of the string received
134 Microsoft Visual Basic 2008 Express Edi

the application can continue in that state without potentially corru

opening security holes. One of the .NET runtime (CLR) principles is

ever happens. Therefore, the CLR crashes your application to preve

continuing to execute in an unknown state. Even though the CLR is

it is less likely to have insecure code executing in .NET; however, it i

To help you find the bug that raised the unhandled exception,

another useful tool: the Exception Assistant. The assistant is helpfu

context of the exception, it provides information that helps you de

ers such as the type of exception, troubleshooting tips, and correct

applied through the Exception Assistant. Look at Figure 7-8 to see

for the current exception.

Figure 7-8
Exception Assistant

When you look at the exception name, the troubleshooting tip

it should be apparent why an unhandled exception was raised. The

self-explanatory: IndexOutOfRangeException. The first troubleshoo

to make sure the maximum index on a list is less than the list size. A

based, which means that the first element starts at index 0. The len

as the argument is 10, as shown in Figure 7-8.

135

lizer

A U T I O N
f at any time you use the Edit

nd Continue feature and you see

hat your data is odd-looking or

eems corrupted, stop the debug-

ing process and restart the

ebugging of your application.
Chapter 7: Fixing the Broken Blocks

The intent of this method was to modify the last character of the string when

the position in the array is equal to a position passed by value to the method. In

this particular case, the position passed by value to the method is 1.

Therefore, in the For loop, at the second character of that string, the If statement

will return true, and then the index i will get the value of the string length. This means

i is now equal to 10. When the application tries to modify the character at index 10, an

exception is generated because index 10 is outside the range of the array. The array

has 10 characters, with indexes from 0 to 9. Figure 7-9 uses a new visualizer to look at

the CharArray content.

When you move the mouse pointer over program elements, you’ll sometimes see

a magnifier. If you click the drop-down list, you will see a list of visualizers that display

the information in a way that is meaningful to the data type you’re seeing. For instance, if

you’re working with XML or HTML content, the XML or HTML visualizer will allow you to see

the content as if you were using Windows Internet Explorer or any other XML/HTML tool.

You’ll use one of the visualizers soon when you debug the ReadFile method.

TO FIX THE OUT-OF-RANGE PROBLEM

1. Modify the ManipulateStrings method. Subtract 1 from the string length when you assign

a new value to i. The line of code should look like this after you modify it:

i = myString.Length – 1

2. After modifying this line of code, move your next execution pointer to the For statement

so that index i starts at 0. Step through the code or step out. This time there should be

no exception. Continue to step through the code, and you should now see another mes-

sage: “HelloworlZ.” The string has been modified because it was passed by reference.

Continue to step through the code, and soon you’ll get a second exception, which is a

division-by-zero error. Of course, an exception is raised because the Divide method assigns

0 to the denominator when the numerator is greater than 5. Using a visualizer, you can see

that the numerator is 6, and therefore 0 will be assigned to the denominator.

Figure 7-9
Array visua

C
I

a

t

s

g

d

on: Build a Program Now!

 that you make sure the

ement; but before you

ch those corner cases

. The exceptions are

ow explain the logic

 0 to the denominator;

 an If statement would

And because most divi-

cation. Using an excep-

er solution because the

our application should

is best practice to always

se, you know that the

erefore, it’s the first one

en need to do some-

u throw the exception

aised, but you don’t

s form of handling that

ffice Excel, Excel won’t

ro error and displays the

n integer to indicate

 between two applica-

 meant two different

ur application failed, but

gure out which one was
136 Microsoft Visual Basic 2008 Express Editi

Again, the first displayed troubleshooting tip helps by suggesting

denominator is not 0. To solve the problem, you could add an If stat

do that, consider another .NET principle.

It’s good practice in .NET to use the exception mechanism to cat

instead of coding special conditional instructions that bloat the code

an integral part of the .NET Framework, and they’re everywhere. I’ll n

behind this decision.

In a real application, your application would not purposely assign

therefore, most divisions would result in a correct operation. Adding

result in a conditional instruction executed for every single division.

sions would be valid, you would automatically slow down your appli

tion-handling mechanism to catch those corner cases is a much bett

exception-handling code will be executed only when necessary, so y

be faster.

When you insert exception-handling code in your application, it

catch exceptions from the most precise to the least precise. In this ca

DivisionByZeroException exception is the one most likely to occur; th

you want to catch.

When you catch an exception, the exception is “handled.” You th

thing about it; either you handle it by mentioning it to the user or yo

back. In this case, you want the user to know that an exception was r

want the program to crash. Here’s an example that demonstrates thi

I’m sure you already know. If you try to divide by zero in Microsoft O

crash; it will simply indicate that your entry results in a division-by-ze

#DIV/0! message in the cell.

An older way of doing things was to make your method return a

success or failure. And that’s where people met with trouble because

tions, and sometimes between two functions, the same integer code

things. You received an integer that was supposed to tell you why yo

the originating code had two meanings, and it was a nightmare to fi

137
Chapter 7: Fixing the Broken Blocks

the valid error code. In addition, when people used error codes, their code was ugly because

they either had a switch case or had a series of nested If statements.

In .NET, you should never design your methods to return an integer to indicate success

or failure, and you shouldn’t use a Boolean for the same purpose. This is a poor practice that

was used when exceptions did not exist or when people didn’t know or want to use them

appropriately. You should never do this. Instead, use exceptions.

TO ADD CODE TO HANDLE DIFFERENT EXCEPTIONS

1. Click the Stop Debugging button, or press Ctrl+Alt+Break to stop debugging mode. In

TestApplication.vb, modify the btn_Click method to look like the following:

Dim myObjectLibrary as New Library()

Dim myString As String = “Helloworld”

Dim myFile As String = “”

Try

 MessageBox.Show(myObjectLibrary.Divide(5, 3).ToString())

 MessageBox.Show(myObjectLibrary.Divide(3, 3).ToString())

 MessageBox.Show(myObjectLibrary.Divide(6, 4).ToString())

Catch ex As DivideByZeroException

 MessageBox.Show(ex.ToString())

End Try

Try

 myFile = “MyExistingTextFile.txt”

 MessageBox.Show(myObjectLibrary.ReadFile(myFile))

 myFile = “MyNotExistingTextFile.txt”

 MessageBox.Show(myObjectLibrary.ReadFile(myFile))

Catch ex As FileNotFoundException

 MessageBox.Show(myFile + “ doesn’t exist!”)

End Try

myObjectLibrary.ManipulateStrings(myString, 20)

MessageBox.Show(myString)

myObjectLibrary.ManipulateStrings(myString, 1)

MessageBox.Show(myString)

n: Build a Program Now!

and execute the code.

r FileNotFoundException

tabs. For instance, the

ons that you want to

e anything and the

the application you are

 the compiler and does

. You could enter a

dow just as if you were

un the application by

u, and then click Win-

ow at the bottom of

e in real time during

pplication. But beware

hem in the Immediate

n.

o aware of the tech-
138 Microsoft Visual Basic 2008 Express Editio

2. Remove all the breakpoints in TestApplication.vb and Library.vb,

Look at the different message boxes. If a DivideByZeroException o

exception occurs, a message box will be displayed.

During this debugging session, you didn’t use some other useful

Watch tab is important because you can enter variables and expressi

follow and monitor during the execution of the application.

Another useful tool is the Immediate window, where you can typ

compiler verifies, compiles, and executes it on the fly! Any effect on

debugging is immediate. Any piece of code that can be evaluated by

not require a block of code can be entered in the Immediate window

loop, for instance. You also have full access to IntelliSense in this win

in the code editor. Let’s look at a simple example.

TO USE THE IMMEDIATE WINDOW

1. Put a breakpoint at the first instruction in your application, and r

pressing F5.

2. If you don’t see the Immediate window, just click the Debug men

dows and Immediate. You should have an empty Immediate wind

your screen.

3. Type i = 5, and then hit the Try-It button.

4. Type If i > 2 Then MessageBox.Show(i), and then press Enter.

The message box that appears should show a 5. You can test cod

the execution without executing a single line of code from your a

that if you use variables that are in your application and modify t

window, you modify them for the application as well.

5. Click the Stop Debugging button to stop executing the applicatio

You’re now not only able to build new applications, but you’re als

niques and tools available to debug them.

139
Chapter 7: Fixing the Broken Blocks

In Summary…

In this chapter, you learned about breakpoints; about different techniques to step into,

step over, and step out of the source code; and about data visualizers to see the data in the

most pertinent way based on its content or context. You also learned how to work with a DLL.

You discovered that you can use the Edit and Continue feature to modify variables at run

time and continue the execution.

You learned how you can move the next instruction pointer to re-execute some lines of

code. You also started to deal with exceptions and learned the dos and don’ts of debugging.

You saw how subtle bugs can find their way in—usually because of distractions and some-

times simply because you don’t possess all of the knowledge and experience yet—but that’s

OK. Don’t worry; you’re in a process called learning.

In the next chapter, you’ll learn about using databases, working with ADO.NET, using LINQ,

and manipulating data to and from a Microsoft SQL Server Express Edition database. You’ll

learn how to use this data to populate controls on a Windows form. You’ll also learn how to

create an application to add, modify, delete, and visualize rows in a car tracker application.

141

rms application and

tion has, but you have not

lways a concern, whether

tion. For instance, I have

n I want to prepare a nice

 that usually I change my

y computer, it would be

ith herb crust and prepare

nformation to the recipe

 main dish or what wines

re of the finished meal.

essing program, such as

ble as soon as you collect

 within that file. Using a

lso problematic. Trying

 one variable is close to

 want to retrieve all the

have lamb stew meat but

ests is allergic to mint.

ation in either a Word file

me to the rescue.

how to create a database;

h or query a database;
8
What Is a Database?, 142

Using SQL Server 2005
Express Edition in Visual
Basic 2008 Express
Edition, 150

What Are ADO.NET, Data
Binding, and LINQ?, 163

Chapter 8
Managing the Data

So far, you’ve seen how to build a Windows Fo

examples of the characteristics that type of applica

managed a great deal of data. Managing data is a

at home, at the office, at school, or even for recrea

many recipes and ideas for great dinners, but whe

meal, it takes me so much time to find the recipes

mind about cooking. If I had this information in m

easy to quickly access my recipe for rack of lamb w

a fabulous meal. I could also add other pertinent i

file, such as what side dishes were served with the

went well with this recipe. I could even add a pictu

You can manage some data using a word proc

Microsoft Word, but it would become unmanagea

a lot of recipes and need to search for information

spreadsheet program, such as Microsoft Excel, is a

to find information quickly when using more than

impossible. Using the recipe example, suppose you

recipes that can serve at least six people and that

no mint in the ingredients because one of your gu

Imagine the time it would take to find that inform

or an Excel spreadsheet. That’s where databases co

In this chapter, you’ll learn what a database is;

how to add, delete, and update data; how to searc

n: Build a Program Now!

anying Microsoft Visual

on, which is a fully

ith fewer features. SQL

uilding simple and

ing a systematic struc-

ing management

005 is a relational

tured using sets (the

mmercial database

f the most popular

ight have also heard of

tables that are related.

xes, security informa-

lements of a relational

data, and a row con-

 RDBMS that uses the
142 Microsoft Visual Basic 2008 Express Editio

and how to use a database in a Windows Forms application. Accomp

Basic 2008 Express Edition is Microsoft SQL Server 2005 Express Editi

workable version of its big brother, Microsoft SQL Server 2005, but w

Server 2005 Express Edition is free, easy to use, and geared toward b

dynamic applications.

A database is a collection of data that is stored in files on disks us

ture. Because of this systematic structure, users can query the data us

software called a database management system (DBMS). SQL Server 2

database management system (RDBMS), which means its data is struc

sets theory in mathematics) and logical relations (predicates). Most co

products are based on the relational model. In fact, it has been one o

models for the past 20 years. Apart from Microsoft SQL Server, you m

Oracle or IBM DB2.

What’s in a Database?

A relational database, such as SQL Server 2005, contains multiple

A database can also contain views, stored procedures, functions, inde

tion, and other elements. In this section, you’ll learn about the basic e

database, which are a table and its components.

A table contains columns and rows. A column defines the type of

tains the actual data. Because the relational model has strict rules, an

relation model must implement them.

What Is a Database?

N O T E
 You’ll learn about some of the

other elements contained in a

relational database later in this

chapter.

M O R E I N F O
 In reality, no popular RDBMS is

fully implementing the pure rela-

tional model as it was first cre-

ated in the 1970s.

143

N O T E
The following tables have purposely

been kept simple (some columns are

missing) to illustrate the concepts

you’ve just learned.
Chapter 8: Managing the Data

What Are Data Normalization and Data Integrity?

The rules defining the relational model are called normalization rules. Normalization is a

process that data architects apply whenever they are at the design phase. Normalization rules

exist to reduce the chance of having the same data stored in more than one table; in other

words, they reduce the level of redundancy and preserve data integrity in the database. Logi-

cally, the normalization process exists to help place data into its own table so that no dupli-

cation of information occurs in more than one table. For example, having an application in

which a customer’s address, city, state or province, ZIP or postal code, and country are dupli-

cated in two different tables is a bad idea. There should be only one link from the customer

table to the other table referencing additional customer information. Having duplicate data

makes updates and deletions more problematic and also poses the risk of having modified

data in one table and not the other. This example demonstrates a data integrity problem.

Let’s look at another data integrity problem. Suppose you have both a product table and

a table containing customer order details. Although you normalized your data, data integrity

does not exist in this example. Why? Let’s say you decide to delete product1, which means

removing the row from the product table that corresponds to product1. If the RDBMS would

let you do this, it would mean that suddenly all rows in the customer order details table that

contained this product would not be able to show which product was ordered because the

product would no longer exist. Those rows would be orphaned, which could have disastrous

results for the company and the application.

As you can see, data integrity is an important concept related to the accuracy, valid-

ity, and correctness of the data. To better understand some of these concepts, let’s look at

another example.

Suppose you are the owner of an online store and want to manage your company

using a software application. To use a software application, you must start thinking about

using a database. Any company, both small and large, typically has a great deal of data to

store. Also, because data is all around us, people want more access to this data so they can

create reports and conduct analysis. That is why databases are so useful. Returning to your

online store, at a minimum you would like to store information about your customers, prod-

ucts, invoices, purchasing, and inventory. To summarize all these areas, let’s take a look at the

Product, OrderHeader, and OrderDetail tables, as shown in Table 8-1, Table 8-2, and Table 8-3,

 respectively.

ion: Build a Program Now!

 Nulls?

Null

Null

Null

Null

Null

 Nulls?

Null

Null

Null

Null

Null

Null

 Nulls?

Null

Null

Null

Null

Null
144 Microsoft Visual Basic 2008 Express Edit

Column Name Data Type Allow

ProductID (PK) Integer Not

ProductNumber nvarchar(10) Not

Name nvarchar(50) Not

Description nvarchar(200) Null

Photo image Null

Price money Not

Taxable bit Not

Table 8-1
Product Table

Column Name Data Type Allow

OrderID (PK) integer Not

OrderDate datetime Not

DueDate datetime Not

CustomerID (FK) integer Not

TaxAmount money Not

Total money Not

Table 8-2
OrderHeader Table

Column Name Data Type Allow

OrderID (PK) (FK) integer Not

OrderDetailID (PK) integer Not

ProductID (FK) integer Not

Quantity integer Not

LineTotal numeric(38,6) Not

Table 8-3
OrderDetail Table

145
Chapter 8: Managing the Data

You can also represent your Product, OrderHeader, and OrderDetail tables graphically, as

shown in Figure 8-1. This is a common way of looking at databases.

Figure 8-1
Partial database diagram for a small online company

What Is Null?

One of your first observations about the tables is that they each have an Allow Nulls?

column, which is also reflected in Figure 8-1. When designing a table, you need to consider

what’s absolutely necessary (Not Null) and what’s not (Null). For instance, when you insert a

new row into the Product table, it might not matter whether the product has a photo, but it

might be a problem to have a product without a product number. Now let’s correlate how

allowing null is related to data integrity. Whenever a table is designed with columns that don’t

allow null, the RDBMS will reject any insertion of a new row that has a column set to null when

it is not supposed to be. When you pay attention to those columns that cannot be set to null

when designing your tables, you automatically add another data integrity layer by making

sure that all the necessary data is present before the record is inserted into the database.

ition: Build a Program Now!

ed “(PK),” which stands for

 yellow key. Some other

re foreign keys. Let’s start

ific row in a table. A pri-

mposed of more than one

rrogate key. A surrogate

gate key is also called an

 called the identity seed,

ement. For example, if you

ProductID that is set as an

 increment to 1. When the

enerated by the RDBMS

t to 2, and so forth.

 number of rows it will

h the rest of the columns

mber could be used as a

e an advantage compared

 to exist anyway!
146 Microsoft Visual Basic 2008 Express Ed

What Are Primary Keys and Foreign Keys?

You can see in the previous tables that some columns are mark

primary key. In Figure 8-1, primary key columns are marked with a

columns are identified with “(FK)” to indicate that these columns a

by talking about the primary key.

Primary Keys
A primary key is a value that is used to uniquely identify a spec

mary key has the following attributes:

Can be composed of one or more column names. When it’s co ■

column, it’s called a composite key.

Is often a numeric field. ■

Is often generated by the RDBMS, in which case it’s called a ■ su

key is frequently (but not always) a sequential number. A surro

identity in SQL Server 2005. An identity starts at a set number,

and increments by another set number, called the identity incr

create a table named Product, you can have a column named

identity, and you can set the identity seed to 1 with an identity

first row is created in the Product table, the ProductID will be g

and set to 1. The following row will have a ProductID that is se

Should be as small as possible but large enough to support the ■

represent.

Is immutable, meaning its value should never change. ■

Is also a natural key when the key has a logical relationship wit ■

in the table. For example, if you had a book table, the ISBN nu

primary key because it uniquely identifies one book. It would b

with a generated key because it would take less space and has

Is also used to relate two tables together. ■

147
Chapter 8: Managing the Data

In our Product table example, ProductID is the primary key. At design time, it will also be

an identity. You can claim that the product number could be a primary key—and you could

be right—but in certain scenarios a product number could be used twice. For example, sup-

pose you have product #FG-001 with a revision 1.0. In time, you change the product because

of customer complaints and give it a revision 2.0. You want your customers to continue to

order the same product number for many business reasons. In your database, you would

retire the product revision 1.0 by perhaps changing a column named Active, and you would

then add another row in your table with the new product details including revision 2.0 and

set it to Active. Why can’t you use the same row? Let’s assume that six months after creating

the new product revision, you want to create a graph to determine whether your changes to

the product mean you had fewer returns from your customers. It would be difficult to come

up with good data if you had only one row for the product, but it would be fairly easy to do

if you have two rows because they would be unique in the database, with each having a dif-

ferent ProductID.

In the OrderDetail table, you have a composite primary key that is a combination of

OrderID and OrderDetailID. This means these two columns would ensure the uniqueness of a

row in the OrderDetail table. In the OrderHeader table, OrderID is the primary key.

Foreign Keys
A foreign key is a column in a table that relates to a column in another table. It also

lets you create relations between tables. A foreign key in a table is always a primary key in

another table. Foreign keys are used to enforce data integrity by being part of foreign key

constraints. Foreign key constraints are created to make sure referential integrity is preserved

and not violated. There are two foreign keys in the OrderDetail table. The first is the Produc-

tID foreign key, and it’s related to the primary key named ProductID in the Product table.

The second is the OrderID foreign key, and it’s related to the primary key named OrderID in

the OrderHeader table. Concerning the naming of foreign keys, it’s good practice to define

them using the same name as their primary key counterpart; otherwise, it might lead to

problems for people looking at your logical data model.

I introduced you to data integrity earlier in this chapter. When doing so, I cited an example

that could create similar problems to the one in the Product and OrderDetail table example.

Adding a foreign key constraint between these two tables would prevent a user from deleting

tion: Build a Program Now!

umber of orphaned rows

nstraint between Product

between the two tables.

 have only three tables in

at exist between numer-

ader and OrderDetail

 all of its matching order

Header table has a sec-

constraint is between the

ound with other foreign

 being deleted before all

s in the OrderDetail table

tegrity would be eas-

bomb of orphaned rows

y constraints, the RDBMS

rence a product have

t table.

 delete rows or query the

self, “But how do I talk or

ueries? And how do you

er questions as well. The

xpress Edition.

 the 1970s. The acronym

elling, but because of a

as shortened to the now

ctured English Query
148 Microsoft Visual Basic 2008 Express Edi

a product in the Product table that could potentially create a large n

in the OrderDetail table. If you look at Figure 8-1, the foreign key co

and OrderDetail is shown as a line labeled FK_Product_OrderDetail

Naming constraints is an easy way to understand their purpose. We

our example, but you can imagine that constraints without names th

ous tables would quickly become unclear.

Another foreign key constraint is the one between the OrderHe

tables; this constraint prevents an order from being deleted before

details have been deleted. You can see in Figure 8-1 that the Order

ond foreign key called CustomerID. Therefore, another foreign key

Customer and OrderHeader tables. Following the same principles f

key constraints, this prevents a customer in the Customer table from

the matching orders in the OrderHeader table and all the detail row

that match the orders have been deleted.

If there were no foreign key constraints in this database, data in

ily violated. The database would be left with a big problem: a time

that take up space and slow down all queries. By adding foreign ke

ensures, for example, that all rows in the OrderDetail table that refe

been deleted before the product row can be deleted in the Produc

How Do You Interact with a Relational Database?

So far, I’ve talked about tables in which you can update, add, or

database to get particular results. Perhaps you’ve been asking your

interact with the database? How does it return the answers to my q

create those tables?” I’m sure you’ve been asking yourself many oth

answer to all of these questions in this chapter is SQL Server 2005 E

SQL stands for Structured Query Language and was invented in

is pronounced “sequel” and was also introduced using that same sp

trademark dispute in the United Kingdom in the 1970s, the name w

well-known SQL acronym. (The other acronym, SEQUEL, means Stru

149
Chapter 8: Managing the Data

Language.) SQL is an English-based language and is similar to human-language questions.

That’s why it’s easy and fast to learn basic SQL programming. Let’s look at two examples:

SELECT * FROM CUSTOMER

SELECT COUNT(*) FROM PRODUCT

The first line can be translated as give me all (*) rows in the Customer table, or (less

formally) give me the list of customers. The second line can be translated as a request to give

me the total of all rows contained in the Product table—in other words, to count how many

products this company has.

When you issue a SQL query to a relational database, the database returns a result set

that simply contains the rows with the answers to your query. Using SQL, you can also group

or aggregate the results of a query. You also use SQL to create tables or delete (drop) tables.

You’ve learned about primary keys, foreign keys, and constraints, but you probably didn’t

know that they’re also created using SQL.

It’s also good to know that SQL is an ANSI/ISO standard; therefore, any RDBMS pro-

ducer needs to obey a set of rules. Basic SQL is a base programming language and as such

is usually not sufficient to solve all the possible problems or provide all the analysis needs

that an application might demand. It has a rather limited set of keywords. Because their first

goal is to query data from a database, the most popular RDBMSs on the market have added

extensions to SQL to permit the addition of procedural code. These additions turn SQL into

a full-fledged programming language that helps solve more complex problems. Among the

popular extensions and their manufacturers are Microsoft Transact-SQL (T-SQL), Oracle PL/

SQL, and IBM SQL PL. Recently, in addition to these extensions, RDBMS manufacturers have

added support for other programming languages. Microsoft added .NET language support

into the database with all SQL Server 2005 editions, while Oracle and IBM have added Java

support.

There are more database concepts and theories than those explained here, but I have

covered the immediate database needs for this book. You’ll now apply those concepts con-

cretely in a Windows Forms application that will use a SQL Server Express 2005 database.

dition: Build a Program Now!

n Visual Basic

. This will be a car-tracking

d determine where the list-

tabase and the tables, and

u just learned. You will then

 data-centric application that

is section’s example.
150 Microsoft Visual Basic 2008 Express E

Using SQL Server 2005 Express Edition i
2008 Express Edition

In this section, you will develop a Windows Forms application

application that lets the user track the prices of cars over time an

ing was observed. You will first use Visual Studio to create the da

then you’ll add some data and validate some of the concepts yo

create a Windows application that will use your data and build a

lets users store any amount of data.

Refer to Figure 8-2 for the database diagram pertaining to th

Figure 8-2
Car tracker application database diagram

M O R E I N F O
 SQL Server is well integrated

because Visual Studio provides a

great software development kit

(SDK) for other components to

plug into the IDE.

M O R E I N F O
 The .mdf file extension is used

by the SQL Server family of prod-

ucts. The .mdf file contains the

entire database, which means all

tables and other elements that

exist in the database are located

in this file. The only element that

is not part of the .mdf file is the

log information, which is in an

.ldf file that is created whenever

you create a database. You can

see the .ldf file by clicking the

Show All Files icon in Solution

Explorer.

151

igure 8-3
olution Explorer with the
ewly created CarTracker.
df database file

igure 8-4
atabase Explorer with the
arTracker database connected
Chapter 8: Managing the Data

Creating a Database Using Visual Basic 2008 Express Edition

Before using data, you need a place to store the data. In this section, you’ll learn how to

create a database in Visual Basic 2008 Express Edition. You’ll also see how easy it is for you to

create all the tables you need to satisfy the needs of the car-tracking application because the

SQL Server team did a wonderful job of integrating the tools into Visual Studio.

TO CREATE A DATABASE USING VISUAL BASIC 2008 EXPRESS EDITION

1. Start Visual Basic 2008 Express Edition.

2. Create a new Windows Forms application, and name it CarTracker.

3. You will now create the database that will hold all the tables for the application. In Solu-

tion Explorer, right-click the CarTracker project, select Add, and then select New Item.

4. In the Add New Item dialog box, select Service-Based Database under Visual Studio

Installed Templates. Type the filename CarTracker.mdf, and click the Add button. By

doing so, you’ll create a database and attach the database file (CarTracker.mdf) to your

CarTracker project.

5. You will then see the Data Source Configuration Wizard. Don’t pay attention to this dia-

log box just yet; you’ll learn about it soon. Just click Cancel for now.

Solution Explorer should now contain a new item within your project: the database file

called CarTracker.mdf, as shown in Figure 8-3.

6. You will now start adding tables to your database. To do this, you can either double-click

the CarTracker.mdf file or right-click CarTracker.mdf and then select Open. This causes

Visual Studio to connect to the SQL Server 2005 Express Edition instance installed on

your machine.

Database Explorer should appear on the left side of the screen where the Toolbox usually

opens, as shown in Figure 8-4. If you do not see Database Explorer, select the View

menu, and then select Database Explorer.

Under the database name, you should see a list of database elements represented by

folder icons. Although you will not recognize most of them, you will see two elements

F
S
n
m

F
D
C

ion: Build a Program Now!

ou will use both of these

 the database icon with

abase icon with a red X.

nnected. You might have

r. To verify the state of

utton in the Database

plorer, and select Close

ame.

s. You can click the

Explorer and select

te, you will see a dialog

 dialog box lets you recon-
 database.
152 Microsoft Visual Basic 2008 Express Edit

that are already familiar to you: database diagrams and tables. Y

elements shortly.

You’ll know that you’re connected to the database when you see

an electric cord. When you’re disconnected, you will see the dat

However, seeing a red X does not necessarily mean you’re disco

been disconnected earlier but never refreshed Database Explore

the connection to your database, you should click the Refresh b

Explorer toolbar.

7. Right-click your database named CarTracker.mdf in Database Ex

Connection. You should now see the red X near your database n

You’re now disconnected. You can reconnect in a couple of way

Refresh button, or you can right-click the filename in Database

Modify Connection.... If you choose the Modify Connection rou

box like the one shown in Figure 8-5.

Figure 8-5
The Modify Connection
nect to your CarTracker

N O T E
 Currently, you have only one

database in your project, but it’s

not unusual to need to connect

to and get information from

two or more databases. That’s

why Database Connections in

Database Explorer is there as a

tree—it’s representing each data-

base as a node in that tree. You

have only one node in the tree,

which is your CarTracker database.

153

Saving Database Files

You should pay attention to

the database filename in the

Modify Connection dialog box.

If you didn’t save all the files in

your project, everything is still

located in a temporary folder

identified by the content of the

text box. As soon as you save

all the files in your project, the

database will be saved along

with the other project files,

wherever they are located. You

can later verify that location by

selecting the Tools menu, select-

ing Options..., and then looking

at the Projects and Solutions

node in the tree. On the right

panel in this dialog box you can

determine where your projects

are stored by looking at the first

text box called Visual Studio

Projects Location.

N O T E
 From this point onward, for every

tree control and every control

that is a group (that is, has a +

sign), I’ll use the word expand

instead of repeating the words

click the + sign.
Chapter 8: Managing the Data

8. Because it’s good practice to test your connection, click the Test Connection button to

verify the connection currently specified. This also verifies that SQL Server 2005 Express

Edition is ready and able to receive connections from your applications. Click OK to

reconnect to your database.

Creating Tables in Your Database

Now you’ll create all the tables and relationships needed for the CarTracker application.

Using the information found in Figure 8-2, you’ll create tables, primary keys, identities, and

foreign key relationships in the CarTracker database, and you’ll do all of this without leaving

Visual Studio.

TO CREATE TABLES IN A DATABASE

1. Let’s start with the Color table. In Database Explorer, right-click the Tables folder icon,

and select Add New Table. You should now see an empty grid on the designer surface,

which is the Table Designer. You will also see that a new toolbar has appeared, which is

the Table Designer toolbar. This toolbar has all the tools necessary to help you create a

table without writing a single SQL query.

2. You’ll now add a column to the Color table. Type ColorID in the Column Name field

of the Table Designer. Select int as the data type, and clear the Allow Nulls check box

because this column will be the primary key in this table. A primary key cannot be null

since it is part of the uniqueness of a row in the table.

3. Before you add the second column in the Color table, you’ll set the ColorID column as

the primary key. To do so, you need to click the Set Primary Key icon (the key icon) in the

Table Designer toolbar.

4. The database diagram shown in Figure 8-2 illustrates that you also need this column to

be an identity; therefore, you need to modify that property in the Column Properties

window right below the Table Designer. Scroll down until you see the Identity Specifica-

tion group. Click the + sign located to the left of the words Identity Specification to

expand this group. Now click in the (Is Identity) field, and set it to Yes. Leave both Iden-

tity Seed and Identity Increment set at 1 for now.

ion: Build a Program Now!

n name. Add the two

et the size of the Color-

, your table should look

e to the database.

ss Ctrl+S. When the

 your table Color, and

 existing tables in

and the Color table to

ld appear, as shown in

r Solution Explorer.

. Make sure the project
154 Microsoft Visual Basic 2008 Express Edit

5. To add another column, click in the row under the ColorID colum

remaining columns based on the diagram shown in Figure 8-2. S

Name nvarchar by typing 30 in the Data Type field. When done

like the one shown in Figure 8-6.

Figure 8-6
Table Designer with all the columns for the Color table

6. Now that you’re done with the design, you need to add the tabl

To do this, you need to save the table. Click the Save icon, or pre

Choose Name dialog box appears, as shown in Figure 8-7, name

then click OK.

Figure 8-7
The Choose Name dialog box showing the Color table name

7. Expand the Tables folder in Database Explorer to view the list of

the database; the new Color table should appear. When you exp

view the list of columns, all three columns you just created shou

Figure 8-8.

8. Close the Color table in the Table Designer by clicking the X nea

9. Click the Save All icon in the toolbar to save your project on disk

name is CarTracker, and click the Save button.

N O T E
As a reminder, when a column is

an identity, SQL Server automati-

cally generates a new number

each time a row is created in a

table. It starts at the value indi-

cated by the Identity Seed prop-

erty and increases in increments

by the value indicated by the

Identity Increment property.

N O T E
 In the Table Designer, the little

black triangle indicates the cur-

rent row.

Figure 8-8
Database Explorer
with the Tables fold-
er and Color table
expanded

155

T I P
 Whenever you click a column

name in Database Explorer, you’ll

see the properties listed in the

Properties window. This is the

same Properties window you’ve

been using, with one minor dif-

ference: it is a read-only view and

therefore does not let you modify

information.

T I P
 Depending on your resolu-

tion, the view might be tight. If

you want to view more of the

diagram, you might need to

unpin or close some windows,

such as Solution Explorer or

the Properties window; you can

return these items to your screen

by selecting the View menu and

then selecting Solution Explorer

or Properties Window. You can

also change the zoom value by

changing the value in the Zoom

drop-down list.
Chapter 8: Managing the Data

10. Before creating other tables, read this step completely. Now that you have the knowl-

edge to create a table, create all remaining tables (ColorType, Make, and Listing) using

the same techniques you’ve just learned. Make sure all tables and all their columns are

created in the same way as shown in Figure 8-2. Don’t worry about establishing the

relationships, because you’ll create those in the following exercises. Between each table

creation, save your new table immediately, and make sure it appears in Database

Explorer. Then close the table in the designer surface as shown earlier in step 8 of this

section.

Creating Relationships Between the Tables

You have created tables, but they don’t have any relationships. You’ll now add those rela-

tionships and make sure your database has data integrity to avoid any orphaned rows. Like

many other elements in Visual Basic 2008 Express Edition, there’s more than one way to cre-

ate the relationships. One is more visual than the other, and you’ll start with this more visual

approach to stay focused on the main idea of the book, which is being productive.

Before you’re able to create the relationships visually, there is a prerequisite to add to

your project: a database diagram. It might not look exactly like the one shown in Figure 8-2,

but it will be similar.

TO CREATE RELATIONSHIPS BETWEEN TABLES

1. Go to Database Explorer, and right-click the Database Diagrams node located above the

Tables node. Select Add New Diagram. A dialog box appears indicating that SQL Server

2005 Express Edition doesn’t have all the database objects it needs if you want to create

database diagrams.

2. Click Yes to have SQL Server create the components it needs to obtain a database dia-

gram. When it’s done creating the components, you should be asked which tables you

want to add to your diagram in the Add Table dialog box.

3. Select all the tables you created, and then click Add. It should take less than a minute for

your diagram to appear. Click the Close button to indicate to Visual Studio that you have

all the tables you need.

n: Build a Program Now!

 save your diagram and

Diagrams node, expand

ee the designer surface

 at Figure 8-2, you’ll

e there’s a relation-

tionship. You need to

ned nodes in the Listing

tablish a relationship

ase, you need to create

ou see the small

step. Drag ColorID

. Align your mouse

e the relationship—in

e a small + appear,
156 Microsoft Visual Basic 2008 Express Editio

4. Click the Save All button, or press Ctrl+Shift+S. You’ll be asked to

choose a name. Name your diagram CarTrackerDiagram.

5. If you don’t see your database diagram, first go to the Database

it, and then open the diagram by double-clicking it. You should s

with all your tables.

Let’s focus on one relationship we need to create. When you look

see that the ColorID column is present in the Listing table becaus

ship to the Color table. The line between both tables is an FK rela

have this relationship established, or otherwise you’ll have orpha

table whenever a Color row is deleted. This means you have to es

between the primary key table and the foreign key table. In this c

a relationship from the Color table toward the Listing table.

6. In the database diagram, click ColorID in the Color table where y

yellow key.

7. Look at Figure 8-9 to see where you should be at the end of this

toward the Listing table; you should see a line appear as you drag

pointer so that it’s over the column with which you want to creat

your case, over the ColorID field in the Listing table. When you se

drop it.

Figure 8-9
Creating the foreign key relationship between the Color and Listing tables

157

M O R E I N F O
 To reinforce the concept of estab-

lishing relationships between

tables, I’ll now give you another

way of looking at the relationship

in this exercise. There are two

reasons why the ColorID column

is in the Listing table as an FK.

First, it is used for a normaliza-

tion and design principle because

you don’t want to have duplicate

data. Second, it is used for data

integrity reasons and, more spe-

cifically, for the orphaned rows

problem. Let’s look at it with

some sample data. Suppose there

is a Color row called Dark Blue,

and the Listing table contains six

different ad definitions that are

Dark Blue. If you remove the Dark

Blue color from the Color table,

it would mean that those six ads

would have orphaned data. That

is why you created a foreign key

relationship: to make sure that if

an application or a user tries to

remove data in the Color table, a

process within SQL Server 2005

will prevent this by validating

that no “kids” are left behind in

the Listing table before allowing

the deletion to occur in the Color

table.
Chapter 8: Managing the Data

8. If you correctly selected and released the mouse button once you were over ColorID in

the Listing table, you should see a Tables and Columns dialog box asking you to con-

firm the creation of the FK relationship. It’s important for each table that ColorID is the

column name that appears to link both tables in that dialog box. If the primary key and

foreign key tables are correct and the selected column names are correct, click the OK

button.

You should then see the Foreign Key Relationship dialog box shown in Figure 8-10.

Figure 8-10
Foreign Key Relationship dialog box for the relationship between the Listing and Color tables

9. Although you can change some properties within this dialog box, just click OK for now.

See Figure 8-11 to view the diagram with the new relationship created.

on: Build a Program Now!

g table and the yellow

g table indicates the

le can contain any

e matching primary key

the primary key is being

les are close together.

 by dragging them by

layed). This is sometimes

ou do not end up with

our Listing table in the

ier to create relation-

on your diagram at

table on the diagram’s

u can also have the

m by right-clicking the

or Table 8-4.

gn Key Table

g

g

 content shown in Fig-

ing at where the infinity

 verification.
158 Microsoft Visual Basic 2008 Express Editi

In Figure 8-11, note the infinity symbol located close to the Listin

key located close to the Color table. The infinity symbol on the Listin

table’s cardinality. It indicates that, in this relationship, the Listing tab

number of rows with information coming from th

table. The yellow key indicates from which table

taken.

I rearranged the diagram so that the two tab

You can rearrange your tables any way you want

the title bar (that is, where the table name is disp

necessary when you create relationships so that y

an unusual-looking diagram. I suggest you put y

middle of your other tables because it will be eas

ships this way. You can also rearrange the tables

any time by right-clicking anywhere except on a

designer surface and selecting Arrange Tables. Yo

labels for every relationship appear on the diagra

diagram’s designer surface and selecting Show Relationship Labels.

Now create the other FK relationships by using either Figure 8-2

Column Primary Key Table Forei

MakeID Make Listin

CarTypeID CarType Listin

Table 8-4
List of Foreign Key Relationships to Create

When finished, the content of your diagram should resemble the

ure 8-12. Make sure your relationships are arranged properly by look

symbols and yellow keys are located and by looking at Table 8-4 for

Figure 8-11
Modified diagram showing the new FK relationship between the
Listing and Color tables

159

M O R E I N F O
 You can review the properties

of any relationship by double-

 clicking the line between two

tables or by right-clicking and

selecting Properties from the

context menu.

Entering Data

While typing your data, look to

the table’s leftmost area in the

table data grid, and you’ll see

a small pencil icon, a star, or a

small black triangle. The pencil

indicates you’re modifying the

row. The star indicates a new

row, and the small black trian-

gle indicates the current row.
Chapter 8: Managing the Data

Figure 8-12
Completed CarTracker database diagram

Click the Save All button or press Ctrl+Shift+S to commit the changes to the database.

Click Yes when asked whether you want to save.

Entering Data in SQL Server Tables Using Visual Studio

Now that you have created all your tables and relationships, you’ll start inserting data in

your tables and verifying that your constraints ensure the data integrity of your database.

Let’s start by adding data to all tables. You’ll first add rows to the Color table.

TO ENTER DATA IN SQL SERVER TABLES USING VISUAL STUDIO

1. To start entering rows in the Color table, right-click the Color table in Database Explorer,

and select Show Table Data. Your designer surface should have a grid like the one shown

in Figure 8-13.

tion: Build a Program Now!

lue, and then press the

d. Because that column

 bit type is a binary type.

 four new rows of data
160 Microsoft Visual Basic 2008 Express Edi

Figure 8-13
Empty Color table in the table data grid

2. Let’s add the first color. Click the Color Name field, type Dark B

Tab key to go to the next column. Type true in the Metallic fiel

type is a bit, its values can be only either true or false because a

When you’re done, press the Tab key to go to the next row.

3. Add three more car colors—Red, Silver, and

Black—and set Red as Metallic and the other

two colors as nonmetallic (that is, false). When

you’re done, the table should look like the one

shown in Figure 8-14.

4. Add the data in Table 8-5 and Table 8-6 to the

Make and CarType tables, respectively.

MakeName Country

GoodRoadster Germany

SmallCar France

BigSUV USA

ReliableCar Japan

Table 8-5
Data for the Make Table

Figure 8-14
Color table with

Don’t Add Data to
Identity Columns

For all columns you created

as identity columns, don’t type

the data because the field will

automatically be generated by

SQL Server 2005 Express Edition

whenever the row is created in

the table. If you try to type data

in an identity column, you will

not be allowed to do so. When

the cursor is in an identity col-

umn, you’ll see near the naviga-

tion bar at the bottom of the

Table Designer that the cell is

read-only.

161

y EPGHighway Notes

28 This is my

dream car, follow

regularly.

15 Too much gas

M O R E I N F O
 You can navigate through the

table by using the navigation

controls at the bottom of the

grid. With these controls you can

perform tasks such as moving to

the first and last rows, moving

to the previous and next entries,

moving to a new record, or typ-

ing a row number to move to

that row.
Chapter 8: Managing the Data

CarTypeName NumberOfDoors

Roadster 2

SUV 5

Hatchback 5

Sedan 4

Coupe 2

Table 8-6
Data for the CarType Table

You might not have realized that by giving a type to your data, you actually added data

integrity verification to your database. Try modifying one of the Color rows by changing

the Metallic column to Helloworld instead of true or false. You’ll get an error message tell-

ing you that the Metallic field is of type Boolean.

To show how data integrity is preserved using the foreign key constraints, you’ll add two

Listing rows. You will enter more rows when using your Windows Forms application.

5. Right-click the Listing table, select Show Table Data, and add the two rows shown in

Table 8-7.

ColorID MakeID CarTypeID DateSeen Year Price Cylinder HP URL EPGCit

1 1 1 08/11/2008 2005 42500 6 240 http://www.

litwareinc.com/

20

4 3 2 07/30/2008 2003 39775 8 340 http://www.

cpandl.com/

10

Table 8-7
Data for the Listing Table

ion: Build a Program Now!

ing correctly. Open the

Table Data.

 the pencil usually

blue. Right-click, and

 delete the row. Click Yes.

g that the row was not

he DELETE statement

is statement affirms why

ned rows. Figure 8-15

ormation is provided to

problem but a feature of

5
 box showing the foreign key
 preventing the deletion of a row
ke table

to delete the first row of

a, you’ll learn to use the

ET, about data binding
162 Microsoft Visual Basic 2008 Express Edit

6. You’ll now verify that one of your foreign key constraints is work

Make table by right-clicking the Make table and selecting Show

7. Let’s try to delete the first row by clicking the leftmost field where

appears. The row should be selected, and all the fields should be

select Delete.

8. A dialog box should appear inquiring whether you really want to

9. You should receive the following dialog box error message statin

deleted because of the foreign key constraint: “Error Message: T

conflicted with the REFERENCE constraint ‘FK_Listing_Make.’” Th

the foreign key constraint was created, which was to avoid orpha

depicts what the error dialog box looks like and what kind of inf

help you debug the problem, if necessary. In this case, it’s not a

your creation!

Figure 8-1
Error dialog
relationship
from the Ma

10. Click OK to exit this dialog box.

11. Test your other constraints related to the Listing table by trying

the CarType table. You should receive the same error message.

Now that you have all your domain tables loaded with some dat

database in a Windows Forms application. You’ll learn about ADO.N

with Windows Forms controls, and about LINQ.

SQL and T-SQL
Documentation

If you want more information

about SQL and T-SQL, you

can read the SQL Server 2005

Express Edition documenta-

tion at http://msdn2.microsoft.

com/en-us/library/ms165706.

aspx. The SQL Server 2005

Express Edition documentation

is designed to help you answer

most questions you might have,

but it might also refer you to

the SQL Server 2005 documen-

tation. You can download the

SQL Server 2005 documentation

at http://msdn2.microsoft.com/

en-us/sqlserver/bb428874.aspx.

163

N O T E
 Visual Basic 2008 Express

Edition allows you to work with

Microsoft Access databases, but

working with SQL Server 2005

Express Edition gives you all the

enterprise-quality benefits of

SQL Server 2005, with the only

downside being a reduced set of

features.
Chapter 8: Managing the Data

What Are ADO.NET, Data Binding, and LINQ?

You rarely enter all data manually using Visual Studio. You typically let the user do it, or

you do it through an application. You can also either import data from another source or

create the new data using SQL scripts, but those are more advanced concepts that will not

be covered in this book.

This section will focus on how to build Windows applications that can connect to and

receive data from a SQL Server 2005 Express Edition database using ADO.NET and LINQ on

datasets. The following is a formal, official definition of ADO.NET from the MSDN online

library:

ADO.NET provides consistent access to data sources, such as Microsoft SQL Server, as well

as data sources exposed through OLE DB and XML. Data-sharing consumer applications can

use ADO.NET to connect to these data sources and retrieve, manipulate, and update data.

ADO.NET cleanly factors data access from data manipulation into discrete components that

can be used separately or in tandem. ADO.NET includes .NET Framework data providers

for connecting to a database, executing commands, and retrieving results. Those results are

either processed directly or placed in an ADO.NET DataSet object in order to be exposed

to the user in an ad-hoc manner, combined with data from multiple sources, or remoted

between tiers. The ADO.NET DataSet object can also be used independently of a .NET

Framework data provider to manage data local to the application or sourced from XML.

The ADO.NET classes are found in System.Data.dll and are integrated with the XML classes

found in System.Xml.dll. When compiling code that uses the System.Data namespace, ref-

erence both System.Data.dll and System.Xml.dll.

I’ve presented the long and formal definition of ADO.NET because it contains elements

you’ll learn about while working with the CarTracker application. I also chose it because I

want you to refer to it whenever you’re working with ADO.NET. Here is a less formal defini-

tion that I think summarizes what ADO.NET is all about: ADO.NET is the .NET Framework way

of accessing and programmatically manipulating databases or data using XML sources.

With ADO.NET 2.0 came new ways of accessing data from different sources. In Visual

Basic 2008 Express Edition, you are limited to the following data sources: databases (SQL

n: Build a Program Now!

stom objects. It is

T 2.0, especially when

and other tools make

io 2008 covers numer-

werful when used

sics in this book, but

d ADO.NET and from

nd query and update all

Here’s a formal defini-

l Basic and provides

ta. Rather than sending

ery syntax for each type

he Visual Basic language.

 in-memory arrays and

urce that supports LINQ.

ecause your queries

rned as strongly typed

ite code faster and catch

queries can be used as

ound to controls so that

 CarTracker applica-

er. The main goal of the

ave your database ready

on. What you need is

leting existing ads, and

 you narrow your search

the domain tables (in

e, and so forth).
164 Microsoft Visual Basic 2008 Express Editio

Server Express and Microsoft Access databases), Web services, and cu

much easier (that is, there is less code) to manipulate data in ADO.NE

using all the tools included in Visual Studio 2008. Many new wizards

the experience of working with databases a pleasant one. Visual Stud

ous common scenarios with its tools and wizards, but it’s also very po

programmatically without using the visual tools. You will learn the ba

nothing is preventing you from learning more about data binding an

unleashing powerful applications.

With LINQ you can create queries within your Visual Basic code a

kinds of data (arrays, lists, XML, Web services, SQL databases) easily.

tion of LINQ, and then let’s jump into the code:

Language-Integrated Query (LINQ) adds query capabilities to Visua

simple and powerful capabilities when you work with all kinds of da

a query to a database to be processed, or working with different qu

of data that you are searching, LINQ introduces queries as part of t

It uses a unified syntax regardless of the type of data.

LINQ enables you to query data from a SQL Server database, XML,

collections, ADO.NET datasets, or any other remote or local data so

You can do all this with common Visual Basic language elements. B

are written in the Visual Basic language, your query results are retu

objects. These objects support IntelliSense, which enables you to wr

errors in your queries at compile time instead of at run time. LINQ

the source of additional queries to refine results. They can also be b

users can easily view and modify your query results.

We’ll return to the topic of LINQ later in the implementation of the

tion, but before proceeding any further, let’s talk more about CarTrack

application is to track car ads over the Internet. Because you already h

to go, you now need to consider what will be included in this applicati

simply a way of displaying the ads, adding new ads, modifying and de

searching through the ads using a series of drop-down boxes that help

based on certain criteria. These search criteria will come directly from

other words, separate drop-down controls for the car type, color, mak

165

N O T E
 Not all Windows Forms controls

are “data-binding-aware.” When

they are aware, they have a

DataBindings property.

gure 8-16
e Data Sources window

N O T E
 The Data Sources window might

end up somewhere else in your

IDE. Because your IDE is entirely

customizable to your liking, you

can have your windows and tabs

appear wherever you think they

are most productive for you.
Chapter 8: Managing the Data

When using drop-down controls or any other controls with data that you know exists

in your database, you don’t want to populate the data by hand. You want to use the data-

 binding capabilities of a control. Data binding is an easy and transparent way to read and

write data and link a control on a Windows form to a data source in your application.

ADO.NET takes care of a great deal of activity behind the scenes (it’s even better in .NET

Framework 3.5), as well as managing the connection to the database. Managing the connec-

tion doesn’t stop at opening and closing the connection; it also concerns itself with finding

the database with which you’re trying to connect. When a connection is opened, it means

your application can talk to the database through ADO.NET method calls. ADO.NET manages

all exchanges (send/receive) of data between your application and the database for you.

ADO.NET also manages the data through diverse mechanisms: read-only forward navigation,

navigation in any direction with read-write, field evaluation, and so forth. And the beauty of

it is that you usually don’t have to write a lot of code to enjoy those nice features.

Developing the CarTracker Application

You’ll now start developing the CarTracker application. First you need to create a dataset

that will provide you with all the data binding you need for the CarTracker application. Now

that your tables are established, you can configure the dataset with all the elements you’ve

just added to your database.

Before creating a dataset, though, you must learn what a dataset is. A dataset is an

in-memory representation of one or more tables and is used to store the rows you retrieve

that match the query you sent to the database. You can then add, delete, or update rows in

memory. When the user is done, you can submit, save, or commit the changes to the data-

base. In a few steps, you’ll see the CarTrackerDataSet.xsd file, which is called an XML schema

definition file. The .xsd file ensures that the data will be structured and respect the schema.

You’ll use this file later in the project when I discuss data binding.

To create a dataset, you’ll learn to use the Data Sources window. This window gives you

access to all the data sources you have configured in your application. Figure 8-16 shows

where the Data Sources window is located. If you don’t see the Data Sources window, you

can access it by clicking the Data menu and clicking Show Data Sources. If Show Data

Sources does not appear on the Data menu, be sure you have closed all the CarTracker table

data grids and Form1 is visible.

Fi
Th

on: Build a Program Now!

, or click the Add New

n Wizard appears.

 you to choose the data

eb service, or one of

ication, so choose that

uld see the CarTracker

n is simple: when you

ur project, a data con-

 your application as

elect Properties and

u can also expand the

s like.) This connection

. Having the connection

tice. It gives you the

on without recompila-

n string and connect to

g the application’s

 filename. In our appli-

only app.config while

hat will be in your data-

the tables, so expand the

t to CarTrackerDataSet,

chema document, and it

 dataset is an in-memory
166 Microsoft Visual Basic 2008 Express Editi

TO CREATE A DATASET

1. In the Data Sources window, click the Add New Data Source link

Data Source button in the toolbar. The Data Source Configuratio

2. The first page of the Data Source Configuration Wizard prompts

source type you want to create. You can choose a database, a W

your objects. You’ve just built a database for the CarTracker appl

data source type. Select Database, and then click Next.

3. On the next page, you will choose your data connection. You sho

connection string prepopulating the Connection field. The reaso

created the CarTracker SQL Server Express Edition database in yo

nection was created for you. The connection string was added to

an application setting. (If you right-click your project name and s

then the Settings tab, you will see the connection string entry. Yo

bottom of the dialog box to see what the connection string look

string defines how your application will connect to the database

string in your application configuration file is actually a best prac

advantage of only modifying the file and restarting the applicati

tion so as to automatically pick up the changes in your connectio

that new location.

The application configuration is stored in an XML file named usin

executable name with .config added at the end of the executable

cation, the file is named CarTracker.exe.config, although you see

working in Visual Studio.

4. Click Next on the Choose Your Data Connection page.

5. On the next page, you’ll select all the tables from the database t

set, and you’ll name your dataset. In your case, you will need all

Tables node, and select all the tables. Leave the dataset name se

and then click Finish.

The result of your dataset configuration is an .xsd file, or an XML s

will define the internal structure of your dataset. Remember that a

167
Chapter 8: Managing the Data

representation of one or more tables from your database. ADO.NET will use this schema

file when working with your application. When running the application, the user will be

able to add, delete, or modify rows in the dataset (in the computer’s memory). The changes

will remain in memory until the user commits the changes to the database, which in our

example is the CarTracker.mdf file.

6. In Solution Explorer, double-click the .xsd file named CarTrackerDataSet.xsd. As shown in

Figure 8-17, the result of the dataset creation is similar to the database diagram you cre-

ated earlier. Your diagram might be different depending on your screen resolution and

how you customized your IDE.

Figure 8-17
Graphical representation of the CarTracker dataset

There are some notable differences, however. You’ll see the same columns you have cre-

ated in your physical database, but at the bottom of each table you will see some meth-

ods: Fill and GetData(). These methods are particular to the dataset, and the

on: Build a Program Now!

 data to your Windows

es. You’ll see the in-

ch column has a small

u because they are

uick glance at the Color

 X in the corner of the

t have moved the boxes

’ll be asked to save it.

rface the data tables

d because you didn’t

signer surface for Form1.

et, and click the drop-

ces: DataGridView and

grid format with mul-

time with all fields as

p-down arrow, which

form when it is dragged.

rm prevents you from

by clicking the drop-

p-left corner of the

 by modifying the

 pixels and its height is
168 Microsoft Visual Basic 2008 Express Editi

ADO.NET-generated code by Visual Studio will use them to bind

Forms controls—controls that do not exist yet!

7. Return to the Data Sources window, and expand the dataset tabl

memory representation of your tables, and you’ll also see that ea

icon that gives you its type. These icons might look familiar to yo

similar to the controls in the Toolbox. Refer to Figure 8-18 for a q

and Listing dataset tables and their column types.

8. Close the graphical representation of your dataset by clicking the

designer surface. Depending on your screen resolution, you migh

around; if that’s the case, when you try to close this window, you

You can click Yes if you want to preserve where on the design su

are located. This is only design-time information that will be save

change anything else.

9. In Solution Explorer, double-click your Form1.vb file to open the de

10. In the Data Sources window, select the Listing node in your datas

down arrow that’s next to the word Listing. You will see two choi

Details. DataGridView brings all the dataset fields into a table or

tiple rows, while Details brings the dataset fields in one row at a

individual controls. For our example, select Details.

You’ll also see that each member of the dataset has the same dro

means you can change which controls will be dropped onto the

Choosing controls prior to dragging the dataset table onto the fo

having to lay out the UI piece by piece.

11. Change ColorID, MakeID, and CarTypeID to the ComboBox type

down arrow next to each column and selecting ComboBox.

12. Select the Listing node by clicking it, and then drag it near the to

designer surface on Form1.

13. You’ll now modify the form size like you did in previous chapters

form’s Size property. Change the form size so that its width is 450

550 pixels.

Figure 8-18
View of the Color and Listing
dataset tables in the Data Sources
window

169

A U T I O N
ou may need to scroll to see all

he controls depending on your

creen resolution.
Chapter 8: Managing the Data

14. Move all the controls so that the first label is almost in the top-left corner just beneath

the tool strip. See Figure 8-19 to determine how the controls should approximately be

placed.

Figure 8-19
Resized CarTracker form after moving all the controls

As you can see, many things have just happened. Let’s start by looking at the designer

surface. All the fields from the dataset have been added as controls, and labels were also

added based on the name of the field in the dataset. This feature is called Smart Captions.

Visual Studio uses Pascal or camel casing as a mechanism to insert a space in labels when

using Smart Captions. When you drop the dataset fields onto the form, the Smart Captions

feature looks at each field’s casing. When it finds an uppercase letter or an underscore (_)

character following a lowercase letter, it inserts or replaces the underscore with a space.

You can see an exception to this rule in the EPGCity and EPGHighway fields. When you use

uppercase letters for an acronym, for example, Visual Studio cannot distinguish that these

are two words and therefore doesn’t split them apart. You’ll have to split these two fields

manually.

C
 Y

t

s

n: Build a Program Now!

 like any other con-

e will be copied to the

, here’s what your file

df. At run time, the

e copy operation, many

ecause two copies of

 through Database

in the bin\debug folder.

 property called Copy

Always, which means

h build, thus overwrit-

 and then manually

uent builds, the project

verwrite it with the

o copies. Therefore,

ke those same changes

nd vice versa.

reate a connection to it

oject, simply click No.

ata file. The downside

d, and it will therefore

ng the application,

ou want to read more

py behavior), read the

8/26/456886.aspx.

ey fit our application.
170 Microsoft Visual Basic 2008 Express Editio

Know Your Files

When working with local database files, understand that they are treated

tent file. For desktop projects, this means that by default the database fil

output folder (that is, bin) each time the project is built. After pressing F5

structure will look like on disk:

CarTracker\CarTracker.mdf

CarTracker\Form1.vb

CarTracker\Bin\Debug\CarTracker.mdf

CarTracker\Bin\Debug\CarTracker.exe

At design time, the data tools and wizards use CarTracker\CarTracker.m

application uses the database under the bin\debug folder. As a result of th

people assume the application did not save the data to the database file b

the data file are involved. This also happens when looking at schema/data

Explorer. The tools are using the copy in the project folder and not the file

The following are a few ways to work around this copy behavior.

First, if you select your database file in Solution Explorer, you will see a

to Output Directory in the Properties window. By default, it is set to Copy

data files in the project folder will be copied to the bin\debug folder on eac

ing the existing data files, if any. You can set this property to Do Not Copy

place a copy of the data file in the bin\debug folder. In this way, on subseq

system leaves the database file in the bin\debug folder and doesn’t try to o

one from the project. The downside to this method is that you still have tw

after you modify the database file using the application, if you want to ma

within the project, you need to copy the changes to the project manually, a

The other approach is to leave the data file outside the project and c

in Database Explorer. When the IDE asks you to bring the file into the pr

This way, both the design time and the run time will be using the same d

to this method is that the path in the connection string will be hard-code

be harder to share the project and deploy the application. Before deployi

make sure to replace the full path in the settings with a relative path. If y

about the relative path versus the full path (plus a bit more about this co

following article: http://blogs.msdn.com/smartclientdata/archive/2005/0

You’ll see that I took portions of that article and modified them so that th

171

pplication
Chapter 8: Managing the Data

You will also notice that a tool strip has been added that contains almost the same but-

tons you used while working with the database Table Designer.

15. Read the “Know Your Files” sidebar on the previous page. With this copy behavior in

mind, I suggest you use the first approach even though you’ll have to perform some

manual steps. If you want to debug your application from within Visual Studio, it’s prefer-

able to use this solution, or you will not be able to see the changes applied to your data-

base file. The database file will always return to the initial one from your project, which is

similar to resetting the whole database to what it is in Visual Studio.

16. Select the CarTracker.mdf database file in Solution Explorer, and change the Copy to

Output Directory property to Do Not Copy in the Properties window.

17. Press F5 to build and run your application. You’ll get an exception message because the

file won’t be copied in the bin\debug directory. Also, on the form

load event when your code tries to fill the dataset, it won’t find the

database at the place specified by the connection string. Therefore,

you get a SQLException stating that it’s not able to attach to the

database. Click the Stop Debugging button or press Shift+F5 to stop

debugging.

18. Using Windows Explorer, go into your project directory (it should be

located at Users\<yourusername>\Documents\Visual Studio 2008\

Projects\CarTracker\CarTracker\), and copy the .mdf and .ldf files into

the bin\debug directory under CarTracker. If you’re not able to copy

the files because Visual Studio still has them open, save all your files,

and then close the project. Then copy the two files mentioned earlier,

and re-open your project.

19. Now press F5 to build and run your application again.

You should see the two records you’ve manually inserted into the

Listing table. You should be able to navigate using the tool strip and

also modify, insert, and delete a record. Figure 8-20 shows a snapshot

of your CarTracker application at run time.

20. Change the URL of the row at position 1 to end with .net instead

of .com.
Figure 8-20
Execution of the CarTracker a

on: Build a Program Now!

mit the changes to the

u should now see the

ion again.

rsions of the CarTracker

atabase Explorer. The

t in .net.

 from the one your

to learn how to make

.

e, you probably saw that

is section of the designer

es for nonvisual controls.

able adapter, a Listing

navigator.

” or a layer of indirec-

ound control on your

ides currency man-

s many methods to

 from its data-bound

ponent: the binding

etting a binding source.

avigation and data

strip with buttons to

t not know that it’s a

pe that constitute the
172 Microsoft Visual Basic 2008 Express Editi

21. After changing the URL for the record, click the disk icon to com

database.

22. Close the CarTracker application, and restart it by pressing F5. Yo

first row with the modified URL ending in .net. Close the applicat

23. To verify that you are working with design-time and run-time ve

database, open the Listing table, and select Show Table Data in D

first row should still contain a URL column ending in .com and no

Point proven! The database file in Visual Studio is now decoupled

application is using at run time. Read the note in the left margin

the data the same in both the design-time and run-time versions

Using the Component Tray

When you dragged the Listing dataset table to the designer surfac

five items were added in the gray area below the designer surface. Th

surface is called the component tray and is the section Visual Studio us

In your case, it added an instance of the CarTracker dataset, a Listing t

binding source, a table adapter manager, and finally a Listing binding

I’ll describe several of these individually:

Binding source ■ You can think of a binding source as a “broker

tion. You can also think of it as an intermediary between a data-b

form and a data source, such as a dataset. A binding source prov

agement and notification services (events). The binding source ha

facilitate, such as sorting, filtering, navigating, and editing of data

controls to the data source. It’s also linked tightly to the next com

navigator. When you see a binding navigator, you’re assured of g

Binding navigator ■ The binding navigator is a means to add n

manipulation. It has a UI component or, more specifically, a tool

facilitate the functionality provided by the binding source.

Typed dataset ■ Although you know what a dataset is, you migh

strongly typed object. It contains data tables of the DataTable ty

N O T E
 If you want the same data in

Visual Studio as you have when

executing the application in

debug mode, you must close

your project completely. Using

Windows Explorer, copy the .mdf

and .ldf files from the bin\debug

folder to the project folder. When

you reopen your project, the

database will now contain the

same content.

Suppose you then want to

modify the structure of your

database, such as adding a

column to a table. If you don’t

want to lose the data within the

bin\debug database files, you

must copy them to the project

folder before you modify the

table structure. When done with

the modifications, you simply

copy both the .mdf and .ldf files

back to the bin\debug folder. Of

course, if your application needs

those new database changes, you

will also have to modify the data-

set, but that process is beyond

the scope of this book.

173
Chapter 8: Managing the Data

in-memory representation of your database tables. These data tables also have a special

data adapter called the table adapter. There is a table adapter for each data table.

Table adapter ■ A table adapter is a data access object. It connects to the database (for

example, SQL Server 2005 Express Edition), executes the queries, and fills a data table

with data when it returns from SQL Server. Therefore, it’s the central point for all data

access on an individual table. There is one table adapter per table in your data source. A

table adapter can have more than one SELECT query.

Table adapter manager ■ The TableAdapterManager class has been added in .NET 3.5

to help you maintain referential integrity to your typed datasets. It adds logic to maintain

it and lets you specify in which order the CRUD (create, read, update, delete) transactions

are happening. For instance, you can say that the update order is insert-update-delete

or update-insert-delete. It also helps you to have a single point of update, so instead of

calling the update method on each table adapter, you just have to call the TableAdapater-

Manager.UpdateAll method to save the changes to the database.

How Do I Get More Meaningful Information on My Form?

Let’s return to our CarTracker project. As you can see when you run the application, the

ColorID, MakeID, and CarTypeID combo boxes are there, but they are displaying the ID and

not the name associated with the ID. This is not helpful for the user because an ID doesn’t

have any meaning to users, and they might not be able to easily add or modify rows without

having a human-readable format for those columns. Consequently, you need to make sure

the data is displayed in a humanly readable way and that the ID is stored in the row when-

ever the user modifies the information.

There’s an easy way to accomplish this, which you will do now for your three combo

boxes.

TO DATA BIND WITH DOMAIN TABLES

1. In the Data Sources window, select the Color table from the dataset, drag it onto the

form’s designer surface over the ColorID combo box, and drop it.

on: Build a Program Now!

other binding source

o to the ColorID combo

Mode information box

-drop action bound the

 action, whenever the

olorID. When the user

 that will be used in the

ith the ColorName.

s and the corresponding

x. You now have real

e and Make. The combo

ables and not simply the

ll other potential values.

CarTypeID labels.

t box. Select the Notes

 the MaxLength property

ty to 250.

embles the one shown

e good practice to bring

n Development Tools

, “Building Your Own

rm to Car Tracker.
174 Microsoft Visual Basic 2008 Express Editi

You’ll see that another table adapter (ColorTableAdapter) and an

(ColorBindingSource) were added to the component tray. If you g

box and click the Smart Tag triangle, you’ll see the Data Binding

appear, as shown in Figure 8-21. You’ll notice that your drag-and

combo box control with the ColorBindingSource. Because of this

combo box is displayed, it will show the color names instead of C

picks a color from the combo box, the associated value member

row will still be the ColorID, specifically the ColorID associated w

Wonderful, isn’t it? And we didn’t use any lines of code.

2. Repeat the same process for the Make and CarType dataset table

MakeID and CarTypeID combo boxes.

3. Build and run your application, and then look at each combo bo

color names and not merely ColorIDs; the same is true for CarTyp

boxes are also populated with all the values coming from those t

value for that specific row. Click the down arrow, and you’ll see a

Close the application.

4. On the form, remove the ID part from the ColorID, MakeID, and

5. You will now enlarge the Notes field by making it a multiline tex

text box, and change the Multiline property to true. Also change

to 250, the Size:Height property to 50, and the Size:Width proper

6. Delete the ListingID text box and its label.

7. Size and reposition the controls on the form so that the form res

in Figure 8-22; it does not need to be an exact duplicate. It will b

back UI design concepts from Chapter 5, “Using Rapid Applicatio

with Visual Basic 2008,” and also good preparation for Chapter 9

Weather Tracker Application.” Change the Text property of the fo

8. In Solution Explorer, rename form1.vb to Main.vb.

Figure 8-21
ColorID combo box Smart Tag infor-
mation showing the Data Binding
Mode information box

M O R E I N F O
 This intelligent data binding is a

Visual Studio feature called Smart

Defaults. Smart Defaults looks in

the dataset table to see whether

there’s a column of type string by

either the ID or the primary key.

If so, it tries to use this one for

the data binding.

175
Chapter 8: Managing the Data

Figure 8-22
New visual aspects of the CarTracker application

9. Select the form, and change the BackColor property to GradientActiveCaption.

10. Now add a tool strip container to the form like you did in Chapter 6, “Modifying Your

Web Browser.” Set the Dock property to fill the form. In the Smart Tag menu, select Re-

Parent Controls to place all your tool strips on the top panel and all your other controls

in your content panel. If necessary, use the Document Outline window to view and adjust

the hierarchy of objects on the form.

Everything is nearly complete for this application, but the research capabilities are lack-

ing. Currently, the only way to search is to scan through all the rows until you find the correct

one. This is not difficult now because you have only two rows in your CarTracker database.

Yet, if you had 500 rows, the Scan method would not be effective at all! Therefore, you’ll

implement search capabilities by adding queries to your application by using the Dataset

Designer. That’s where we will introduce the LINQ to Datasets capabilities. You will do one

search capability with plain ADO.NET and two with LINQ to Datasets. After that, you will add

a bit more functionality to your application using LINQ.

tion: Build a Program Now!

 using ADO.NET. In the

 select Edit DataSet with

apter section at the bot-

pes of queries were

rtCommand, Delete-

lp you have a fully

n you read about table

s with a table adapter

search capabilities to your

g elements from the UI as

ch for listings that have a

ry..., as shown in

rd. This wizard will help

e your search. You can

or use an existing stored

QL Server and contains

t use T-SQL.

 procedures can also

tored procedures are

er because no SQL code

parate machine, usually

ant, but with the newest

 argument. Since you’re

n because SQL Server and
176 Microsoft Visual Basic 2008 Express Edi

TO ADD QUERIES TO YOUR APPLICATION

1. Let’s start by adding the search capability to our application by

Data Sources window, select CarTrackerDataSet. Right-click, and

Designer.

2. Select the Listing data table, and then select the ListingTableAd

tom of the data table.

When you look at the Properties window, you’ll see that four ty

automatically generated by Visual Studio: SelectCommand, Inse

Command, and UpdateCommand. They are the queries that he

workable application without writing a single line of code. Whe

adapters earlier, you learned that you can have multiple querie

because it is the central point of data access. You will thus add

application by adding queries to the table adapters and by usin

parameters to your queries. You will first add the ability to sear

certain color.

3. Right-click the ListingTableAdapter section, and select Add Que

 Figure 8-23.

This brings you to the TableAdapter Query Configuration Wiza

you add another SELECT query that will use parameters to refin

also create a SELECT query and turn it into a stored procedure

procedure. As its name implies, a stored procedure is stored in S

SQL statements, along with other programming constructs, tha

A new feature in SQL Server 2005 Express Edition is that stored

be coded in managed languages, such as C# and Visual Basic. S

executed on the server. This approach is usually considered saf

is included in your application and everything executes on a se

in a different physical location. It used to be a bit more perform

ADO.NET, the performance argument is not as big as the safety

using SQL Server 2005 Express Edition, this will be of no concer

the application are executed on the same machine.

Figure 8-23
Adding new queries to a table adapter

177
Chapter 8: Managing the Data

4. Select Use SQL Statements, and click Next. When asked which type of SQL query you

want to use, choose SELECT Which Return Rows, and then click Next. Note that you could

have added any SQL query type you wanted.

5. You are now presented with an edit window in which to add the SQL statement that will

perform a search for all the listings containing a particular color. Refer to Figure 8-24 to

see the SQL command edit window. Click the Query Builder... button to get a visual view

of the query.

Figure 8-24
SQL command edit window ready to customize the user’s search

6. You will now add the Color table to the diagram so that you’ll be able to base your

search on a particular color. To add the Color table, simply right-click in the diagram area,

and select Add Table.... The Add Table dialog box appears, as shown in Figure 8-25. Select

ition: Build a Program Now!

e has been added to the

QL code that will help in
178 Microsoft Visual Basic 2008 Express Ed

the Color table, and click the Add button. When the Color tabl

diagram, click the Close button.

Figure 8-25
The Add Table dialog box

7. In the SQL code pane of Query Builder, append the following S

the filtering process:

WHERE (Color.ColorName LIKE ‘%‘ + @colorname + ‘%‘)

M O R E I N F O
 The % symbol is the wildcard

character in SQL, and it can mean

anything. For example, in the

previous WHERE clause, it means

return something that has a

color similar to the colorname

parameter.

179
Chapter 8: Managing the Data

8. Before you proceed with your new query, make sure it will give you the results you’re

expecting. Click the Execute Query button to display the Query Parameters dialog box, as

shown in Figure 8-26.

Figure 8-26
Query Parameters dialog box with prompt to enter a color name value

9. Try replacing the word NULL with blue, and then click OK. The Results pane of Query

Builder should display only one row. Using the word black should return the black car

row. Simply enter b, and you should get both the blue and the black rows. Once you’re

satisfied with your query, click OK in Query Builder.

10. On the Specify a SQL SELECT Statement page of the wizard, click Next. It’s time to add

your query to the application.

11. A page appears that prompts you to name the methods that your query will gener-

ate. After you create the query, those methods will be available from the Listing table

adapter. Refer to Figure 8-27 to view this screen, which contains the two new method

names. For both names you basically need to add what your filter is. In your case, you

can add ColorName since you filtered by that name in your WHERE clause. When done,

click Next.

ion: Build a Program Now!

rease search capabilities.

 back with a results page

 Get methods are ready

new methods will be

t tray, click the Listing-

arch Criteria Builder

 existing one. Since you

he Existing Query Name

8.
180 Microsoft Visual Basic 2008 Express Edit

Figure 8-27
Use this page of the Query Configuration Wizard to rename the methods used to inc

12. After processing for a few seconds, your computer should come

informing you that your SELECT statement and your new Fill and

to use. Click the Finish button.

Look at the table adapter section of the Listing data table. Your

added there.

13. In Solution Explorer, double-click Main.vb. Go to the componen

TableAdapter Smart Tag, and select Add Query.... You’ll see a Se

dialog box that will prompt you to create a new query or pick an

just built a new method, you merely need to select one. Select t

option, and then select FillByColorName, as shown in Figure 8-2

181
Chapter 8: Managing the Data

Figure 8-28
Search Criteria Builder with the FillByColorName method selected

14. Click the OK button. You’ll see that a tool strip has been placed at the top of the form

with a search button that will call your method when you click it, thereby giving you a

way of searching by certain criteria. This was accomplished by typing only the WHERE

clause for your specific query.

15. Extend the top panel by clicking the grip and pulling it down so that it becomes two tool

strips wide.

16. Make sure your application looks like the one shown in Figure 8-29. Press F5 to see the

results of your work. Type blue in the ColorName tool strip, and click FillByColorName to

see whether it returns blue color car listings.

Edition: Build a Program Now!

arrow down the number of

ol strip labels, two tool strip

nifier image in the Chapter6

 the file by browsing to that

ld have when you’re done.

u’ll need them in the event

ying with. When used with

e almost look like SQL. Let’s
182 Microsoft Visual Basic 2008 Express

Figure 8-29
CarTracker application screen with the filter by color name

17. You will now add the two other buttons to the tool strip to n

rows: one for the car type and one for the make. Add two to

text boxes, and two tool strip buttons. You can find the mag

folder of the companion content. Set the Image property to

Images folder in Chapter6. Figure 8-30 shows what you shou

Make sure to name your variables appropriately because yo

handlers in a minute.

Figure 8-30
Tool strip after you’re done adding Filter By Make and Filter By CarType

Using LINQ

How you use LINQ depends on the type of data you are pla

strongly typed datasets (the ones we have), LINQ queries in cod

183
Chapter 8: Managing the Data

look at the structure of a query using LINQ. MSDN states that a LINQ query, often referred

to as a query expression, consists of a combination of query clauses identifying the data

sources and iteration variables for the query. A query expression can also include instructions

for sorting, filtering, grouping, and joining or can include calculations to apply to the source

data. Query expression syntax resembles the syntax of SQL; therefore, you might find much

of the syntax familiar. The following query gives us the customer names for all customers

who are in the United States:

Dim queryResults = From cust In customers _

 Where cust.Country = “USA”

 Select cust.CompanyName, cust.Country

Now we’ll use LINQ in CarTracker.

TO USE A LINQ QUERY

1. Double-click the tool strip button for the Make filter, and insert the following code:

Dim filteredByMake = From Listing In Me.CarTrackerDataSet.Listing _

 Join Make In Me.CarTrackerDataSet.Make _

 On Listing.MakeID Equals Make.MakeID _

 Where Make.MakeName.ToLower() Like _

 “*“ & Me.tstbFilterByMake.Text.ToLower() & “*“ _

 Select Listing

Me.ListingBindingSource.DataSource = filteredByMake

This is essentially the same step you performed for the color filtering, except you didn’t

add a query to the dataset; instead, you used LINQ to filter the results on the screen. In

reality, the dataset in memory still contains all the data, but you are displaying only the

rows that match one of your filters. That’s nice!

I’ll now explain what is happening. The LINQ query you just wrote is joining two tables

in your CarTracker dataset on the MakeID column and is also using the value in the tool

strip text box for comparison. Note that Like is very similar to the use of LIKE in the color

filter, except that the syntax is slightly different for the wildcard. Finally, you can assign

the result of your query (in other words, filteredByMake) to the DataSource property of

ition: Build a Program Now!

herefore you can simply

ithout LINQ.

de to the Click event of the

ting _

Type _

ypeID _

 _

r() & “*“ _

pter.
184 Microsoft Visual Basic 2008 Express Ed

your binding source because it is a collection of Listing rows. T

assign it to the data source in the same way you would do it w

2. Now let’s do the same for CarType by adding the following co

tool strip button for the Filter By CarType text box:

Dim filteredByCarType = From Listing In Me.CarTrackerDataSet.Lis

 Join CarType In Me.CarTrackerDataSet.Car

 On Listing.CarTypeID Equals CarType.CarT

 Where CarType.CarTypeName.ToLower() Like

 “*“ & Me.tstbFilterByCarType.Text.ToLowe

 Select Listing

Me.ListingBindingSource.DataSource = filteredByCarType

Figure 8-31 shows what you should have at the end of this cha

Figure 8-31
CarTracker application with all the filters

185

Test the application by adding new rows of data that have similar Make and CarType

values and colors so you can validate that your application works well. Note that you could

have created the same application by using LINQ to SQL. This book won’t go into the details

of the implementation for LINQ to SQL, but if you want to learn more about it, please take a

look at the free video series at this Web site: http://www.myvbprof.com/2007_Version/LINQ_

to_SQL.aspx. You’ll see that there are many similarities to what we have done in this chapter.

On the same Web site, you’ll find another great video series talking about programming

Just note

ta. For

ugh the

 will save

 informa-

! Here’s a

on:

ater than
Chapter 8: Managing the Data

with XML in Visual Basic 2008. You’ll find another use of LINQ called LINQ to XML.

that with LINQ you can use the query structure on many different collections of da

example, you could do a LINQ query on strings in a dictionary and then iterate thro

result with a For Each loop. LINQ is a wonderful and powerful new technology that

you time and lines of code and that will improve the readability of your code.

CarTracker is a simple application that you can probably modify to handle more

tion, such as pictures of the cars. But there is nothing you can’t add by yourself now

list of other tasks you can perform if you want to continue to work on this applicati

Add validations for user input, such as making sure the year of the car is not gre ■

the current year + 2.

Add pictures in the databases and on the form. ■

Add a sold check mark. ■

Add three forms to add data in the domain tables (CarType, Make, Color). ■

Add more information in the listing, such as contact information. ■

Make the URL clickable. ■

Save an ad as a text file. ■

tion: Build a Program Now!

you’ve learned. You were

hat constitutes a data-

ut data integrity and how

abase and tables and

isual Basic 2008 Express

leaving Visual Studio and

rTracker application that

g.

 and how, with little or

You’ve been introduced

ant to learn more, refer

ples for Visual Studio

.NET and LINQ. Here’s the

=RightRail. Also refer to

nt.net/learn/videos.aspx.

k at the Learn Visual Basic

ional sources for learning

asic/ms789086.aspx?wt.

s book—the Weather

 consuming Web services,

 necessary validations.
186 Microsoft Visual Basic 2008 Express Edi

In Summary…

That was a big chapter with a lot of material! Let’s review what

first introduced to databases and database concepts. You learned w

base and what you usually find within a database. You learned abo

it relates to primary keys and foreign keys.

You then used Visual Basic 2008 Express Edition to create a dat

then populated them with some initial data using various tools in V

Edition. You implemented all the foreign key relationships without

validated them as well.

After entering your data manually, you developed a sample Ca

lets a user easily enter data and that uses ADO.NET and data bindin

Lastly, you learned about the new components of ADO.NET 2.0

no code, you can develop a fully working data-centric application.

only to a brief part of ADO.NET, because it’s a vast subject. If you w

to the code or samples on MSDN. A good place to begin is the sam

2008. Pay particular attention to the topic of data access with ADO

link: http://msdn2.microsoft.com/en-us/vbasic/bb466226.aspx?wt.slv

the Windows Forms videos at the following link: http://windowsclie

At this location you’ll find some data binding examples. Finally, loo

Web site; this site evolves over time and will provide you with addit

data access using Visual Basic: http://msdn2.microsoft.com/en-us/vb

slv=RightRail.

In the next chapter, you will develop the final application of thi

Tracker application. You’ll learn new concepts such as deployment,

user settings, and much more in a complete application with all the

187

the book and have learned

is chapter, you’ll dot the i’s and

eather-tracking application.

 chapter, but you will also draw

 create the final product. In

rned together to create this
9
Exploring the Features
of the Weather Tracker
Application, 188

Creating the Application
User Interface, 189

Using the MSN Weather
Web Service, 204

And Now, Just ClickOnce,
229

Chapter 9
Building Your Own
Weather Tracker
Application

You have now reached the last chapter of

quite a few new concepts along the way. In th

cross the t’s by developing a fully functional w

You will be working with new processes in this

on what you’ve learned in previous chapters to

this chapter, you will put everything you’ve lea

one application.

ition: Build a Program Now!

 to create version 1.0 of

lication contains the fol-

n in the context menu.

in the notification area.

ns, conditions, and fore-

ton in the title bar. The

ext menu.

ther icon and color coding.

n 1.0:

nd so forth

 First, the user will briefly

otification area in the

erature is above 100

 displayed in red start-

egrees Celsius, which are
188 Microsoft Visual Basic 2008 Express Ed

In this section, you’ll become acquainted with the features used

the weather-tracking application, called Weather Tracker. This app

lowing features in version 1.0:

Starts and resides as an icon in the notification area. ■

Configures optional user settings from the notification area ico ■

Refreshes all weather data on demand from the context menu ■

Uses the MSN Weather service to provide data (weather locatio ■

casts) for cities around the world.

Stores and persists user settings using XML. ■

Minimizes but doesn’t close when the user clicks the Close but ■

application will close only when the user clicks Exit on the cont

Contains a splash screen on start-up. ■

Contains an About box available from the context menu. ■

Displays the current temperature in the system tray with a wea ■

Converts between metric units and English (or Imperial) units. ■

The application will not contain the following features in versio

Will not work for more than one city at a time ■

No graphical gauge controls for wind, pressure, temperature, a ■

I’ll now explain how the Weather Tracker application functions.

see the splash screen. Then the application will go directly to the n

Windows taskbar and display the current temperature. If the temp

degrees Fahrenheit (or 38 degrees Celsius), the temperature will be

ing at 00. If the temperature is below 32 degrees Fahrenheit (or 0 d

Exploring the Features of the Weather Tracker Application

189
Chapter 9: Building Your Own Weather Tracker Application

negative degrees), the temperature will be displayed in violet. If the temperature in Fahren-

heit is below 0 (or -18 degrees Celsius), the temperature will be displayed in blue. Otherwise,

the temperature will be displayed in white. If the reading is not complete, a red NA will show

up in place of the temperature reading.

If the user right-clicks the icon in the notification area, a context menu opens with

choices to open the Main form and retrieve the current weather. The current weather will

have an icon and provide useful weather data that comes from the MSN Weather service.

Clicking Refresh Weather Info in the context menu after clicking the notification area

icon will trigger a call to the weather Web service to update weather data. This will be done

asynchronously and will start by updating the current weather. If the user clicks Options in

the context menu, an Options dialog box will be displayed. The user will be able to search for

different cities around the world. If the user clicks About in the context menu, the application

will display an About dialog box.

In this chapter, I will use a different approach than in previous chapters. Specifically, as

long as you are using the same components that I specify, you can personalize your applica-

tion as far as size, color, and other attributes are concerned. I’ll also present my solution at

different steps in the development; therefore, if you like what you see, you can proceed with

your application by using the companion content that’s provided. I will also present a great

deal of code and explain the sections that are linked to the features described earlier.

To produce the application in this chapter, you will follow an incremental approach in

which you implement one feature, integrate it with the rest of the application, and then test

it. You will then move to the next feature until the application is complete.

Creating the Application User Interface

The Main form user interface (UI) will contain all the weather information you’ll display to

the user. Figure 9-1 shows what the Main form will look like when finished.

on: Build a Program Now!

L

w Windows Forms

 form using the values
190 Microsoft Visual Basic 2008 Express Editi

Figure 9-1
Main form in the Weather Tracker application

TO CREATE A DATA SOURCE FOR A MAIN FORM CONTRO

1. Start Microsoft Visual Basic 2008 Express Edition, and create a ne

Application project. Name the application Weather Tracker.

2. In Solution Explorer, rename Form1.vb to Main.vb.

3. Using the Properties window, change the properties for the Main

in Table 9-1.

Property Value

Size:Width 660

Size:Height 350

BackColor System:HotTrack

Table 9-1
Properties for Main.vb

N O T E
 As you learned in the previous

chapter, you use data binding to

bind the controls to the weather

data. You’ll recall that when cre-

ating the data source, you had a

choice of Database, Web Service,

and Objects. In this application,

you will use a Web service as a

data source, and the fields you

will display on the form will be

data bound to the Web service

dataset.

I M P O R TA N T
All icons or image files in this

chapter are in a folder named

Images under the Chapter9 folder

where you installed the companion

content. The default location is

Documents\Microsoft Press\VB 2008

Express\.

191

M O R E I N F O
 DoubleBuffered helps reduce or

prevent flickering when the form

is redrawn. The form control

is using a secondary buffer to

update the form’s graphics data,

whereby a quick write to the dis-

played surface memory is then

performed, reducing the chances

of flickering. If DoubleBuffered

is not enabled, then progressive

redrawing of parts of the dis-

played form occurs, creating the

flickering.

N O T E
 The NotifyIcon control does not

have a design representation on

the form surface, so you’ll add

it to the component tray at the

same place where you added the

ADO.NET components in the pre-

vious chapter.
Chapter 9: Building Your Own Weather Tracker Application

Property Value

ForeColor Web:White

Font Segoe UI 8 Bold

Icon Sun.ico

MinimizeBox False

MaximizeBox False

StartPosition CenterScreen

FormBorderStyle FixedDialog

ShowInTaskBar False

DoubleBuffered True

WindowState Minimized

Table 9-1
Properties for Main.vb

Adding Notification Area Capabilities

Now that you have established the Main form, you’ll add the notification area capabili-

ties. Let’s talk about terminology. If an application uses an icon located in the notification

area (the area on the Windows taskbar where the clock ordinarily appears), this icon is called

a notify icon and is implemented with a NotifyIcon control. The icon can have a context

menu with different actions. Your icon will have a context menu with the following choices:

About, Refresh Weather Info, Options, Open, and Exit.

TO CREATE A NOTIFYICON CONTROL

1. In the Toolbox, drag a NotifyIcon control from the Common Controls group to the form.

It appears in the component tray. Name the control notifyWeather.

on: Build a Program Now!

s & Toolbars group to

 tray, select Edit Items....

perties using the values

e left, select MenuItem,

sing the values shown in
192 Microsoft Visual Basic 2008 Express Editi

2. Change its Text property to Weather Tracker.

3. In the Toolbox, drag a ContextMenuStrip control from the Menu

the form, and name it cmsNotify.

4. Using the Smart Tag on the cmsNotify control in the component

The Items Collection Editor appears.

5. In the Items Collection Editor, change the cmsNotify control’s pro

in Table 9-2.

Property Value

BackColor System:Gradient

InactiveCaption

ShowImageMargin False

Table 9-2
Properties for the cmsNotify Control

6. From the Select Item and Add to List Below drop-down list on th

and then click the Add button. Change the control’s properties u

Table 9-3.

Property Value

(Name) tsmiAbout

Text About...

ForeColor System:HotTrack

Table 9-3
Properties for the About Menu Item

193
Chapter 9: Building Your Own Weather Tracker Application

7. From the Select Item and Add to List Below drop-down list, select Separator, and click the

Add button. Change its ForeColor property to System:HotTrack.

8. From the Select Item and Add to List Below drop-down list, select MenuItem, and click

the Add button. Change the control’s properties using the values shown in Table 9-4.

Property Value

(Name) tsmiRefresh

Text Refresh Weather Info

ForeColor System:HotTrack

Table 9-4
Properties for the Refresh Menu Item

9. From the Select Item and Add to List Below drop-down list, select Separator, and click the

Add button. Change its ForeColor property to System:HotTrack.

10. From the Select Item and Add to List Below drop-down list, select MenuItem, and click

the Add button. Change the control’s properties using the values shown in Table 9-5.

Property Value

(Name) tsmiOptions

Text Options...

ForeColor System:HotTrack

Table 9-5
Properties for the Options Menu Item

11. From the Select Item and Add to List Below drop-down list, select Separator, and click the

Add button. Change its ForeColor property to System:HotTrack.

ion: Build a Program Now!

ct MenuItem, and click

s shown in Table 9-6.

ct MenuItem, and click

s shown in Table 9-7.

s Collection Editor

fyWeather control, which
194 Microsoft Visual Basic 2008 Express Edit

12. From the Select Item and Add to List Below drop-down list, sele

the Add button. Change the control’s properties using the value

Property Value

(Name) tsmiOpen

Text Open...

ForeColor System:HotTrack

Table 9-6
Properties for the Open Menu Item

13. From the Select Item and Add to List Below drop-down list, sele

the Add button. Change the control’s properties using the value

Property Value

(Name) tsmiExit

Text Exit

ForeColor System:HotTrack

Table 9-7
Properties for the Exit Menu Item

You’re finished adding items to the context menu strip. The Item

should look like Figure 9-2.

14. Click OK to close the Items Collection Editor.

You now need to associate the context menu strip with the noti

is fairly easy to do.

195
Chapter 9: Building Your Own Weather Tracker Application

Figure 9-2
Items for the context menu

TO ASSOCIATE THE CONTEXT MENU STRIP WITH THE CONTROL

1. Select the notifyWeather control in the component tray, and in the Properties window,

change the ContextMenuStrip property to cmsNotify.

You are currently acting as the user. For you to be able to click the application when it’s

in the notification area, your notifyWeather control needs an icon. The icon will later

become dynamically generated by your application, and the icon will become the current

temperature. Therefore, you now need to associate a temporary icon with the applica-

tion; otherwise, you will not be able to select it in the notification area.

2. In the Properties window for notifyWeather, set the Icon property to otheroptions.ico. This

file is located in a folder named Images in the Chapter9 folder where you installed the

companion content.

tion: Build a Program Now!

wn in Figure 9-3.

o click the blue Stop

other way to stop the

wn list.

ties window, and then

thod as shown in the

ou always want to make

 do this.

 e As _
196 Microsoft Visual Basic 2008 Express Edi

3. Press F5 to execute the application.

You should see this icon in your notification area:

If you right-click this icon, you should see the context menu sho

Figure 9-3
Context menu of the notifyWeather control

When you are finished, the only way to stop the application is t

Debugging button in the Visual Studio toolbar. You will now add an

application.

TO STOP AN APPLICATION

1. Select the tsmiExit control from the Properties window drop-do

2. Click the Events button (the yellow lightning icon) in the Proper

double-click the Click event to open Code view.

3. Edit the tsmiExit_Click event handler, and add the Shutdown me

following code. You’re adding the Shutdown method because y

your code reusable, and a Shutdown method will enable you to

1 Private Sub tsmiExit_Click(ByVal sender As System.Object, ByVal

 System.EventArgs) Handles tsmiExit.Click

2 Me.Shutdown()

3 End Sub

4

5 Private Sub Shutdown()

6 If notifyWeather.Visible Then

7 notifyWeather.Visible = False

197
Chapter 9: Building Your Own Weather Tracker Application

8 End If

9 Application.Exit()

10 End Sub

The first instruction of the Shutdown method will verify whether the notifyWeather

control is visible and, if it is, will make the notify icon disappear from the notification

area. The last line will terminate the application. You will now be able to click the Exit

menu item in the context menu to terminate the application; you won’t need to use the

Stop Debugging button. You can try your application by pressing F5 and then verifying

whether the Exit menu item works as expected.

Now you can exit from your application, but you don’t have a way to open the Main

form, which will have the weather information. To do this, you will want to link the

double-click event of the notifyWeather control icon in the notification area to the

action of opening the Main form in the middle of the screen.

4. In Design view, select the notifyWeather control in the component tray. In the events

list of the Properties window, double-click the MouseDoubleClick event. Edit the notify-

Weather_MouseDoubleClick event handler, and add the Restore method as shown in the

following code:

11 Private Sub Restore()

12 If Me.WindowState = FormWindowState.Minimized Then

13 Me.WindowState = FormWindowState.Normal

14 End If

15 Me.Visible = True

16 End Sub

17 Private Sub notifyWeather_MouseDoubleClick(ByVal sender As _

 System.Object, ByVal e As System.Windows.Forms.MouseEventArgs) _

 Handles notifyWeather.MouseDoubleClick

18 Me.Restore()

19 End Sub

Again, you created a private method called Restore in case you need it elsewhere in your

application.

The first line of code in the Restore method is there because it is impossible to know in

which context your method will be called. In your case, when you created the form, you

set the WindowState property to minimized and ShowInTaskbar to false so that the form

tion: Build a Program Now!

e application, the first time

r double-clicks the noti-

 have set only its Visible

 state the form appears. If

s is on the Main form.

n in the notification area,

the red X). If you close the

Yet, our design require-

notification area when

 an event that occurs just

eted, which is an event

ct the reason for the

r clicks the Close button.

e Properties window, and

the Main_FormClosing

yVal e As _

rguments that accompany

ing.

e will stop the closing

 is a call to the Hide

isible property to false.
198 Microsoft Visual Basic 2008 Express Edi

starts minimized and the user doesn’t see it. When you start th

the user clicks the Open… menu choice (you’ll code this soon) o

fyWeather control, the user won’t be able to see the form if you

property to true. Therefore, you need to verify in which window

it’s still minimized, you need to set it to Normal so that the focu

5. Press F5 to test the changes. Double-click the notifyWeather ico

and the Main form should appear.

Now let’s see what happens if the user clicks the Close button (

application by clicking the Close button, it closes permanently.

ments state that the application should simply minimize to the

the user clicks the Close button. Therefore, you’ll now intercept

before the form is closed and just before the form object is del

called FormClosing. By using a FormClosing event, you can extra

form’s closing and in this way intercept the event when the use

 6. In Design view, select the Main form. Go to the events list in th

double-click the FormClosing event. Add the following code to

event handler:

20 Private Sub Main_FormClosing(ByVal sender As System.Object, B

 System.Windows.Forms.FormClosingEventArgs) Handles _

 MyBase.FormClosing

21 If (e.CloseReason = CloseReason.UserClosing) Then

22 e.Cancel = True

23 Me.Hide()

24 End If

25 End Sub

Part of the event is FormClosingEventArgs, which contains the a

the event notification as well as the reason why the form is clos

If the user is closing the form, setting the Cancel property to tru

process and prevent the form from closing. The next instruction

method. The Hide method is simply a synonym for setting the V

The form will simply be hidden.

M O R E I N F O
If you want to learn more about why

a form is closing, you can search

the Help system for CloseReason

enumeration.

M O R E I N F O
 The UserClosing event will also be

called whenever the user presses

Alt+F4 or whenever the user

clicks Close in the form control

menu (the menu that appears

when you click the left corner

where the icon is usually located).

199
Chapter 9: Building Your Own Weather Tracker Application

When the user clicks the Exit item in the context menu, the FormClosing event will be

raised; however, the reason given will not be UserClosing. Instead, it will be Application-

ExitCall, and therefore the application will continue the closing process.

7. You’ll now add the code for the Open... menu choice. To write the code for this event,

click cmsNotify in the component tray, and then double-click the Open... menu choice on

the content menu strip. The Click event handler will be created, and you’ll call the Restore

method to handle the form’s visibility, which is done by the Me.Restore() code. You will

write code to make sure the form has the focus so that it ends up on top of any other

windows that are displayed. Add the following code to the tsmiOpen_Click event handler:

26 Private Sub tsmiOpen_Click(ByVal sender As System.Object, ByVal e As _

 System.EventArgs) Handles tsmiOpen.Click

27 Me.Restore()

28 Me.Focus()

29 End Sub

Now, test the application with the following test scenario.

Start the application by pressing F5. Right-click the notify icon, and select Open.... The

Main form should appear in the middle of your screen. Minimize the Main form by clicking

the Close button. Once it is minimized, double-click the notify icon. You should see the Main

form again. Terminate the application by click the Exit menu item.

Adding the Splash Screen and About Dialog Box

Since you created a splash screen and an About dialog box in Chapter 6, “Modifying

Your Web Browser,” I won’t spend too much time on those topics in this section. You merely

need to add two new forms to your project and name them SplashWeatherTracker.vb and

AboutWeatherTracker.vb. Don’t forget to use the correct template when you add the form to

the project; if you don’t, you won’t be able to access all of the prepopulated information.

Using the values in Table 9-8, set the specified properties for the SplashWeather form.

The location of your labels doesn’t matter; place them wherever you want. Any images are

located in the Images folder under Chapter9 where you installed the companion content.

dition: Build a Program Now!

lue

enterScreen

ountain.jpg

retch

goe UI 20 Regular

eb:White

goe UI 9 Bold

eb:White

goe UI 9 Bold

eb:White

e AboutWeatherTracker form.

lue

goe UI 8 Regular

stem:HotTrack

enterScreen

eb:White

goe UI 8 Regular
200 Microsoft Visual Basic 2008 Express E

Component Property Va

SplashWeatherTracker StartPosition C

MainLayoutPanel BackgroundImage M

Main LayoutPanel BackgroundImageLayout St

ApplicationTitle Font Se

ApplicationTitle ForeColor W

Version Font Se

Version ForeColor W

Copyright Font Se

Copyright ForeColor W

Table 9-8
Properties for SplashWeather.vb

Using the values in Table 9-9, set the specified properties on th

Component Property Va

AboutWeatherTracker Font Se

AboutWeatherTracker BackColor Sy

AboutWeatherTracker StartPosition C

AboutWeatherTracker ForeColor W

TextBoxDescription Font Se

Table 9-9
Properties for AboutWeatherTracker.vb

201
Chapter 9: Building Your Own Weather Tracker Application

Component Property Value

TextBoxDescription BackColor System:HotTrack

TextBoxDescription ForeColor Web:White

OKButton FlatStyle Flat

LogoPictureBox Image Sunset.jpg

Table 9-9
Properties for AboutWeatherTracker.vb

Now you need to attach these two forms to the rest of the application.

TO ATTACH FORMS TO AN APPLICATION

1. To attach the splash screen, you’ll use the Project Designer. In Solution Explorer, right-

click the Weather Tracker project, and select Properties. On the Application tab, set the

Splash Screen drop-down list to SplashWeatherTracker.

2. While you are at it, you’ll change the application icon to Sun.ico. In the Icon drop-down

list, select <Browse...>. Select the Sun.ico file in the Chapter9 Images folder.

3. Click Assembly Information, and set the assembly information for the project. This infor-

mation will fill the splash screen and About dialog box fields.

4. To attach the About box, you need to tie it to the context About... menu item. Go to your

Main.vb form in design mode.

5. Select cmsNotify in the component tray, and double-click the About... menu choice in the

context menu strip. Add the following code to the tsmiAbout_Click event handler:

1 Private Sub tsmiAbout_Click(ByVal sender As System.Object, ByVal e As _

 System.EventArgs) Handles tsmiAbout.Click

2 AboutWeatherTracker.ShowDialog()

3 End Sub

 (continued)

n: Build a Program Now!

ox form that will

enu after clicking the

ue

oe UI 8 Regular

tem:HotTrack

terScreen

b:White

e

dDialog

e

e

 form
202 Microsoft Visual Basic 2008 Express Editio

Adding the Options Dialog Box

You now have three forms. You will add the final Options dialog b

appear when the user clicks the Options… menu item in the context m

notify icon.

TO ADD THE OPTIONS DIALOG BOX FORM

1. In Solution Explorer, right-click Weather Tracker,

select Add, and then click Windows Form in the

context menu.

2. From the templates, select Windows Form, name the

form Options.vb, and then click Add.

3. Using the values in Table 9-10, set properties and

add controls to the Options form so that it looks like

the form shown in Figure 9-4.

Component Control Type Property Val

Options Form Font Seg

Options Form BackColor Sys

Options Form StartPosition Cen

Options Form ForeColor We

Options Form ControlBox Fals

Options Form FormBorderStyle Fixe

Option Form MaximizeBox Fals

Options Form MinimizeBox Fals

Table 9-10
Properties and Controls for the Options Dialog Box

Figure 9-4
The Options

N O T E
 At this point in the chapter, the

current project state is saved in

the Chapter9 companion con-

tent in a folder named Weather

Tracker UI. To add the Web

service functionality, you can

continue with your own project

or use the project in Weather

Tracker UI.

203
Chapter 9: Building Your Own Weather Tracker Application

Component Control Type Property Value

Options Form Text Options

Options Form Size:Width 295

Options Form Size:Height 295

txtCurrentCity Textbox AcceptReturn True

txtCurrentCity Textbox BackColor System:InactiveCaption

lblCurrentCity Label Text Current City:

lbPossibleCities ListBox BackColor System:InactiveCaption

lbPossibleCities ListBox Cursor Hand

lbPossibleCities ListBox SelectionMode One

lbPossibleCities ListBox ForeColor Web:White

btnOk Button BackColor System:InactiveCaption

btnOk Button FlatStyle Popup

btnOk Button Text Ok

btnCancel Button BackColor System:InactiveCaption

btnCancel Button Text Cancel

btnCancel Button FlatStyle Popup

Options Form CancelButton btnCancel

rbCelsius Radio Button BackColor System:HotTrack

rbFahrenheit RadioButton BackColor System:HotTrack

rbFahrenheit RadioButton Checked True

lblUnit Label Text Unit

Table 9-10
Properties and Controls for the Options Dialog Box

n: Build a Program Now!

ns... menu item in the

ing line of code:

ler:

l e _

. Use the context menu

 dialog box. When you

 your project. It is time

 this moment. You need

his, you will learn to

nternet Information

at an application can

u can use Web services

ng a map, buying movie
204 Microsoft Visual Basic 2008 Express Editio

TO HOOK UP THE FORM TO THE CONTEXT MENU

1. Display the Main form in design mode.

2. Click cmsNotify in the component tray, and double-click the Optio

context menu strip.

3. At the top of Main.vb, just below Public Class Main, add the follow

Dim optionsForm as New Options()

4. Add the following lines of code to the tsiOptions_Click event hand

1 Private Sub tsmiOptions_Click(ByVal sender As System.Object, ByVa

 As System.EventArgs) Handles tsmiOptions.Click

2 optionsForm.ShowDialog()

3 End Sub

5. Press F5 to run the application. You should see your splash screen

on the notify icon to open the About dialog box and the Options

have finished, exit the application.

You are now finished with this part of the project. Be sure to save

to get to the meat of the project: using the MSN Weather service.

You have constructed a nice shell, but the shell is rather empty at

to access weather data in order to populate the shell. To accomplish t

consume Web services. But first, what is a Web service?

A Web service is an application that runs on a Web server such as I

Services (IIS). A Web service has a series of exposed public methods th

call. You’ll find numerous examples of Web services on the Internet. Yo

that perform a variety of operations, such as finding a ZIP code, viewi

Using the MSN Weather Web Service

205

I M P O R TA N T
 You will need to be connected to

the Internet to follow the steps

in the rest of the chapter; oth-

erwise, nothing will work from

this point on, especially in the

next section because that’s where

you’re communicating with the

Web service.
Chapter 9: Building Your Own Weather Tracker Application

tickets, looking for information on search engines such as MSN or Google, and accessing

weather information like your application will soon do. In the .NET world, classes and wizards

are available to help you consume Web services. There are two popular implementations of

Web services in use on the Web: SOAP and REST.

SOAP Web services use XML to send messages and return results. All objects are serialized

(the messages are sent as a series of bits and pieces over the Internet) and are then deserialized

on the other side into objects. The beauty of XML Web services is that they can be hosted and

consumed on any operating system and developed in any language. Because they use a series of

standardized protocols and rules, XML Web services promote interoperability and efficiency. The

future of the transacted world over the Internet lies in big part with the success of Web services.

REST Web services use HTTP to make calls to services and receive XML data. They are

lighter to use and implement, and you call them just as you would type a URL in a browser.

For instance, http://www.foobar.com/parts/111 will call a Web service and get you the details

about a part with the part number 111. The XML coming back to your browser would be

the details of that part. REST stands for Representational State Transfer. It’s not a standard

like SOAP is; it is simply an architectural style. However, although it’s not a standard, it does

prescribe the use of many standards such as XML, HTTP, URL, HTML, and so on.

In this project, you will use REST Web services as offered by MSN.

Trying a Web Service

You can use your regular Web browser to try a SOAP or REST Web service without writing a

line of code. You can usually point your Web browser to the Web service address and invoke its

methods. This is an excellent way to learn what a Web method needs and what its output looks

like. (Please note that it’s not possible to talk to all of them in this way.) As an example, try a

SOAP Web service that returns a currency conversion rate between two currencies: http://www.

webservicex.com/CurrencyConvertor.asmx. Click the ConversionRate method, scroll down until

you see two text boxes, type CAD and USD in the two text boxes, and then click Invoke. In a

separate browser, you will obtain XML and the conversion rate (as of today).

To test a REST Web service, you can use the same URL that you will use in code later in this

chapter. In your browser, type the following: http://weather.service.msn.com/data.aspx?src=vist

a&wealocations=wc:USWA0367. In the same browser tab or window, you’ll see the XML repre-

senting weather information for the city of Redmond, Washington.

on: Build a Program Now!

 display the object

ation used to communi-

efine later.

plate. Type Weather-

u’re in Solution Explorer,

herTracker project.

ur code. To do this, open

 Chapter 8, you’ll bind

ms on your form. Now

rt.vb file. To add a field

n the WeatherReport.vb

ditor, and select Insert

perties, Procedures,

Type

Integer

Integer
206 Microsoft Visual Basic 2008 Express Editi

Connecting to MSN Weather Web Services

You will now build a business logic DLL to get the data and then

returned by the different methods in that DLL.

First you will create a .NET assembly that will contain the inform

cate with MSN and also to map to items in the user interface you’ll d

TO CONNECT TO A WEB SERVICE

1. Click File, Add, New Project, and then select the Class Library tem

Report for the class library name.

2. In your class library, rename class1.vb to WeatherReport.vb.

3. Add a reference to the System.Drawing namespace, and while yo

add a reference to your newly created class library to your Weat

4. To use the bitmap, you’ll have to add an Imports statement to yo

the WeatherReport.vb file, and add the following:

Imports System.Drawing

5. This time, instead of binding the data to a database as you did in

the Web service data to an object that will then be bound to ite

add the fields and properties in Table 9-11 to your WeatherRepo

and a property quickly and correctly, you will use a snippet. Ope

file, and then for each field listed in the table, right-click in the e

Snippet/Code Patterns—If, For Each, Try Catch, Property, etc/Pro

Events/Define a Property.

Field Property

currentTemperatureValue CurrentTemperature

feelsLikeTemperatureValue FeelsLikeTemperature

Table 9-11
Fields and Properties for WeatherReport.vb

N O T E
 In Chapter 8, “Managing the

Data,” you learned that you could

create data sources from a Web

service, a database, or an object.

In this section, that’s exactly what

you’ll benefit from here. You will

see how reusing tools and com-

ponents allows you to be more

productive. You will use the same

techniques used in the previous

database examples, except that

this time you will be binding data

coming across the wire from all

parts of the globe.

207
Chapter 9: Building Your Own Weather Tracker Application

Field Property Type

humidityValue Humidity Integer

lastUpdateValue LastUpdate DateTime

locationValue Location String

minTemperatureForecastValue MinTemperatureForecast Integer

maxTemperatureForecastValue MaxTemperatureForecast Integer

skyCodeValue SkyCode Integer

skyTextValue SkyText String

skyImageValue SkyImage Bitmap

locationCodeValue LocationCode String

Table 9-11
Fields and Properties for WeatherReport.vb

6. Save your file after adding all the fields and properties.

7. Build your solution by pressing Ctrl+Shift+B.

Now you’ll add the weather information to your form.

TO ADD WEATHER INFORMATION TO YOUR FORM

1. Make sure you are viewing the Main form on the designer surface.

2. Go to the Data Sources window, and then select Add New Data Source….

3. You will see the familiar Data Source Configuration Wizard, but this time select Object

instead of Database.

4. You’ll add a reference to your newly created class library since this object will be the one

you’ll use to map the data from the Web service and the data displayed on your form.

Click the Add Reference… button, and on the Projects tab select your WeatherReport

ion: Build a Program Now!

therReport assembly

the Finish button.

rces tab beside Solution

ce.

lso a drop-down control.

nd see the details of your

rary assembly. You’ll see

ource.
208 Microsoft Visual Basic 2008 Express Edit

class library. Your screen should display the wizard with the Wea

added, as shown in Figure 9-5. Click Next to continue and then

Figure 9-5
Data Source Configuration Wizard with the WeatherReport assembly selected

You should see the WeatherReport data source on the Data Sou

Explorer. Refer to Figure 9-6 to make sure you’re at the right pla

5. As you can see in Figure 9-6, the data source name is actually a

Click it, and select Details. Then click the plus sign to expand it a

data source that was created from your WeatherReport class lib

that all the properties you created are represented in the data s
Figure 9-6
Data Sources tab with the newly
created WeatherReport data source

209

6. Expand the WeatherReport node, and change all the element types (except SkyImage)
Chapter 9: Building Your Own Weather Tracker Application

from TextBox to Label by clicking the down arrow on each element and selecting Label

from the drop-down list.

7. Drag WeatherReport to the Main form design surface. This creates all the fields and

labels for you. The design might not be what you want, but at least it’s partially done for

you. You’ll fix this in a minute. Note that two new controls have been added to the com-

ponent tray: WeatherReportBindingSource and WeatherReportBindingNavigator.

8. Click WeatherReportBindingNavigator in the component tray, and change its Visible

property to false. (You might need to click the Properties button at the top of the Prop-

erties window to see the list of properties.)

9. You can’t see the boundaries of all the controls on the form. To help with layout, select all

the controls on the form by creating a large selection rectangle around them with your

mouse pointer. In the Properties window, change BorderStyle from None to FixedSingle.

Black borders should appear around all controls. Once the form is done, you’ll reset

 BorderStyle to None.

10. Now you can start modifying the layout and look and feel of your form. For the Pic-

tureBox control, set the Name property to pbSkyImage, set the BackColor property to

Web:White, set the Size.Width property to 55, and set the Size.Height property to 45.

11. Delete the Sky Image: label.

12. Add a Label control, and set the Text property to Current Weather.

13. Add a Label control, and set the Text property to Contacting MSN Weather Service and

the Visible property to False.

14. Add a PictureBox control, and set Visible to False and Image to progressbar_green.gif from

the Images folder.

15. Using Figure 9-7 as a guide, size and position the controls on the form. If you want,

adjust the font size and style of the labels.

tion: Build a Program Now!

m one execution to

 doesn’t have to re-enter

 select Properties. The

urrentUnit, as shown in
210 Microsoft Visual Basic 2008 Express Edi

Figure 9-7
Layout of the current weather information

Setting User and Application Preferences

The application settings are stored in an XML file and persist fro

another. The current location code will be saved here so that a user

the location every time your application starts.

TO CREATE USER SETTING ENTRIES

1. In Solution Explorer, right-click the Weather Tracker project, and

Project Designer appears.

2. On the Settings tab, add entries for CurrentLocationCode and C

Figure 9-8.

Figure 9-8
Application settings in the Project Designer

211
Chapter 9: Building Your Own Weather Tracker Application

All entries are strongly typed (that is, a real .NET type) and set to type String. The scope

field is set to User, which means this setting is related to user preferences and the user

can change it during execution. This type of setting will be persisted from one execution

to another. The other possible setting is Application-scoped, which is usually associated

with an application that uses a database connection string. Users can’t change those set-

tings at execution time.

3. Save your project, and close the Project Designer.

Working in the Background

If you try to run your form now, you won’t get anything from the Web service; you’ll get

only the default text you might have entered. This process differs from your work with data-

bases, in which a great deal of code was completed for you so you could retrieve the data

and populate the fields. When dealing with a Web service, you must do more of the actual

coding to get the data into the form. Let’s talk about how you’ll do this.

Talking to a Web service can be a long process. This typically means only a few seconds

(perhaps up to 30 seconds), but you can’t leave the user with a blocked UI while your appli-

cation is retrieving information. You therefore need a way of saying to your application:

“Go get this information, and let me know when you have it.” This programming technique

is called multithreaded programming with callbacks. Since .NET Framework 2.0, this type of

programming is simplified by a new class called BackgroundWorker. As its name implies, it

works in the background on a task; what’s not implied is that it will let you know when it has

completed the task.
Note —The following sections contain quite a bit of code. If you don’t want to type this code, you can open the completed

Weather Tracker project in the companion content folder and copy the sections of code as needed.

TO ADD THE MSN WEATHER DATA CLASS

To communicate and retrieve the data from the MSN Weather service, you’ll create a

new class called MSNWeatherData.vb and add it to your project. This class will insulate you

from the service and its technicalities; it’s an OOP technique called abstraction, which enables

you (or somebody else using your class) to just say, “Give me the weather report for a loca-

tion. I know it returns a WeatherReport object, and that’s all I need in order to integrate the

ion: Build a Program Now!

SNWeatherData class in

e WeatherReport class,

rm and the code; you

ou’ll see that to connect

e XMLTextReader to con-

thods in this class; the

 essentially it’s just a task

ppropriate fields in the

 from

rned

s= _

l

212 Microsoft Visual Basic 2008 Express Edit

weather report into my application.” In addition, you can use the M

other applications. Isn’t that cool?

To talk to the MSN Weather service and return the data from th

you’ve already created a DLL to handle the mapping between the fo

also enabled the data binding on an object. In the following code, y

to the MSN Web service and read the data, you have to use a simpl

nect to the server and open the resulting XML. Here are the two me

code is not really difficult to understand because it is repetitive, but

of mapping the correct XML file and mapping the methods to the a

WeatherReport class.

1. Add the following code to the WeatherReport class.

 Function GetWeatherReport(ByVal LocationCode As String) As _

 WeatherReport.WeatherReport

 ‘ create a WeatherReport instance so that we can load the data

 ‘ the Web service call and then map it to the UI.

 Dim currentWeatherReport As New WeatherReport.WeatherReport()

 ‘ URL corresponding to the MSN REST Web Service - see how the

 ‘ locationCode is passed in a parameter to this URL.

 ‘ The XMLTextReader opens up the URL and receives the XML retu

 ‘ by the server

 Dim feedUrl = _

 http://weather.service.msn.com/data.aspx?src=vista&wealocation

 & LocationCode

 Dim reader As New XmlTextReader(feedUrl)

 Dim firstForecastDone As Boolean = False

 Dim skyImagesRelativeUrl As String = “images/“

 Try

 ‘ The rest is just extraction and mapping of the meaningfu

 ‘ data points.

 While (reader.Read ())

 If ((reader.NodeType = XmlNodeType.Element) And _

 (reader.Name = “weather”)) Then

 reader.MoveToAttribute(“weatherlocationname”)

 currentWeatherReport.Location = reader.Value

 ElseIf ((reader.NodeType = XmlNodeType.Element) And _

213
Chapter 9: Building Your Own Weather Tracker Application

 ((reader.Name = “forecast”) _

 And (firstForecastDone = False))) Then

 firstForecastDone = True

 reader.MoveToAttribute(“high”)

 Integer.TryParse(reader.Value, _

 currentWeatherReport.MaxTemperatureForecast)

 reader.MoveToAttribute(“low”)

 Integer.TryParse(reader.Value, _

 currentWeatherReport.MinTemperatureForecast)

 ElseIf ((reader.NodeType = XmlNodeType.Element) And _

 (reader.Name = “current”)) Then

 reader.MoveToAttribute(“temperature”)

 Integer.TryParse(reader.Value, _

 currentWeatherReport.CurrentTemperature)

 reader.MoveToAttribute(“feelslike”)

 Integer.TryParse(reader.Value, _

 currentWeatherReport.FeelsLikeTemperature)

 reader.MoveToAttribute(“humidity”)

 Integer.TryParse(reader.Value, _

 currentWeatherReport.Humidity)

 reader.MoveToAttribute(“skytext”)

 currentWeatherReport.SkyText = reader.Value

 reader.MoveToAttribute(“skycode”)

 Integer.TryParse(reader.Value, _

 currentWeatherReport.SkyCode)

 Dim fileName As String = skyImagesRelativeUrl & _

 currentWeatherReport.SkyCode & “.tif”

 currentWeatherReport.SkyImage = New Bitmap(fileName)

 reader.MoveToAttribute(“observationtime”)

 Dim splitter As Char() = “:”

 Dim hourMinuteSecond As String() = _

 reader.Value.Split(splitter)

 Dim hour, minute, second As Integer

 Integer.TryParse(hourMinuteSecond(0), hour)

 Integer.TryParse(hourMinuteSecond(1), minute)

 Integer.TryParse(hourMinuteSecond(2), second)

ion: Build a Program Now!

r, _

urce;

ed)

)

wease
214 Microsoft Visual Basic 2008 Express Edit

 reader.MoveToAttribute(“date”)

 splitter = “-“

 Dim yearMonthDay As String() = _

 reader.Value.Split(splitter)

 Dim year, month, day As Integer

 Integer.TryParse(yearMonthDay(0), year)

 Integer.TryParse(yearMonthDay(1), month)

 Integer.TryParse(yearMonthDay(2), day)

 currentWeatherReport.LastUpdate = New DateTime(yea

 month, day, hour, minute, second)

 End If

 End While

 ‘ We return a valid weather report.

 Return currentWeatherReport

 Catch ex As Exception

 Throw ex

 End Try

 End Function

 Function GetLocations(ByVal Query As String) As _

 List(Of KeyValuePair(Of String, String))

 If ((Query = “”) Or (Query.Length < 2)) Then

 Return Nothing

 Else

 ‘ Because the ListBox in the Options UI can’t bind with a

 ‘ generic collection that doesn’t support IList or IListSo

 ‘ that’s why you use a generic List(Of Items you really ne

 ‘ you are able to load

 Dim results As New List(Of KeyValuePair(Of String, String)

 Dim searchUrl As String = _

“http://weather.service.msn.com/find.aspx?outputview=search&src=vista&

archstr=” & Query

 Dim reader As New XmlTextReader(searchUrl)

 Dim locationCode As String

 Dim locationFullName As String

 While (reader.Read())

 If ((reader.NodeType = XmlNodeType.Element) And _

 (reader.Name = “weather”)) Then

 reader.MoveToAttribute(“weatherfullname”)

215
Chapter 9: Building Your Own Weather Tracker Application

 locationFullName = reader.Value

 reader.MoveToAttribute(“weatherlocationcode”)

 locationCode = reader.Value

 Dim pair As KeyValuePair(Of String, String) = _

 New KeyValuePair(Of String, String)(locationCode, _

 locationFullName)

 results.Add(pair)

 End If

 End While

 Return results

 End If

 End Function

Now that you’ve created the two methods required to obtain information from the MSN

REST Weather service, you’ll add the code to do it asynchronously.

TO PERFORM A TASK IN THE BACKGROUND

1. Open the Main form in Design view.

2. Go to the Toolbox. In the Components section, select the BackgroundWorker control,

and drag it to your form. It doesn’t have a design-time portion, so it will be added to the

component tray. Rename it BackgroundCurrentWorker.

3. At the top of the Properties window for BackgroundCurrentWorker, click the Events but-

ton (the yellow lightning icon), and then double-click the DoWork event.

4. Add the following code to the BackgroundCurrentWorker_DoWork event handler:

Private Sub BackgroundCurrentWorker_DoWork(ByVal sender As System.Object, _

 ByVal e As System.ComponentModel.DoWorkEventArgs) Handles _

 BackgroundCurrentWorker.DoWork

 ‘ This method will execute in the background thread created

 ‘ by the BackgroundWorker component

 Dim desiredLocationCode As String = e.Argument

 Dim myMSNWeather As New MSNWeatherData()

 e.Result = myMSNWeather.GetWeatherReport(desiredLocationCode)

End Sub

n: Build a Program Now!

 service takes place. You

oke the GetWeather-

ck the application UI.

 The GetWeatherReport

.

roundWorker compo-

y busy with a previous

ception. Simply verifying

at exception when call-

n that this method can

st to start an operation

 with the following name

this case, the Back-

ork event is raised.

 component tray.

orkerCompleted event.

rkerCompleted event
216 Microsoft Visual Basic 2008 Express Editio

The DoWork event handler is where the call to the MSN Weather

will start by calling the GetWeatherReport method. When you inv

Report method, it runs in a separate context so that it doesn’t blo

Otherwise, the application could appear to be in a “frozen” state.

method takes one parameter and returns a WeatherReport result

5. Add the following startBackgroundGetCurrentWeather method:

Private Sub startBackgroundGetCurrentWeather()

 ‘ Execute the Background Task only if it’s not already working

 If Not (BackgroundCurrentWorker.IsBusy()) Then

 Me.UseWaitCursor = True

 Me.lblProgress.Visible = True

 Me.PictureBoxProgress.Visible = True

 BackgroundCurrentWorker.RunWorkerAsync(currentLocationCode)

 End If

End Sub

The startBackgroundGetCurrentWeather method starts the Backg

nent. You first need to verify whether BackgroundWorker is alread

call; if you don’t do this, you’ll end up with an InvalidOperationEx

whether BackgroundWorker is busy ensures that you won’t get th

ing the RunWorkerAsync method. In fact, this is the only exceptio

raise. A quick look at the documentation can confirm this.

Executing the RunWorkerAsync method means submitting a reque

asynchronously, which raises the DoWork event. An event handler

format is invoked: <your backgroundworker variable>_DoWork. In

groundCurrentWorker_DoWork method is executed when the DoW

6. Switch to Design view, and click BackgroundCurrentWorker in the

7. In the events list in the Properties window, double-click the RunW

8. Add the following code to the BackgroundCurrentWorker_RunWo

handler:

Dim currentWeatherReport As WeatherReport.WeatherReport

 If (e.Error Is Nothing) Then

217
Chapter 9: Building Your Own Weather Tracker Application

 Me.UseWaitCursor = False

 Me.lblProgress.Visible = False

 Me.PictureBoxProgress.Visible = False

 ‘ This event fires when the DoWork event completes

 currentWeatherReport = e.Result

 If (currentUnit = “C”) Then

 Me.ConvertToMetric(currentWeatherReport)

 End If

 WeatherReportBindingSource.DataSource = currentWeatherReport

 ‘ Refresh the display based on the new data binding and

 ‘ update the labels with the proper temperature unit.

 WeatherReportBindingSource.ResetBindings(False)

 UpdateUnitLabels()

 ‘ If Web service returned weather info, then

 ‘ update notify icon

 Me.CreateIcon(currentWeatherReport.CurrentTemperature)

 Else

 MessageBox.Show(_

 “Problem with the MSN Weather Web service! Error message:” + _

 vbLf + e.Error.Message + vbLf + “Retry Later!”, _

 “Weather Web service problem”)

End If

If the MSN Web service is available, the method you invoked is working in a different

context and on its own. When it is finished with its business, you will be notified that the

method has completed, because a RunWorkerCompleted event will be raised.

To retrieve the results, you must have an event handler with the following name: <your

backgroundworker variable>_RunWorkerCompleted. In this method, you have a parameter of

type RunWorkerCompletedEventArgs that contains everything you need to obtain the results. If

an exception was raised in the DoWork event handler, you’ll be able to retrieve it by checking the

Error property, which is of type Exception. If there is no error, you must retrieve the results your-

self. Remember that the Results property will give you an element of type Object, which by itself

will not help you. You need to assign it a variable with the same type as the binding class you cre-

ated (that is, WeatherReport) to pass data back and forth between the Web service and the form.

If you recall, when you dragged the WeatherReport object to the designer surface, you

automatically created data-bound controls for all of those fields. Thus, you simply need to

n: Build a Program Now!

ingSource, and you will

ntrols on your form. In

nable BindingSource

cation. After that, the

ures, that is, Celsius or

pear in the notification

:

lass Main:

ationCode

ion

rrentTemperature. A

lar instance of that class,

Code, currentLocation,

s. They are initialized

e Options form. They

k to the Main form.
218 Microsoft Visual Basic 2008 Express Editio

assign that currentWeatherReport variable as the data source for Bind

have a link between what’s coming from the Web service and the co

addition, you have to make a call to ResetBindings(False), which will e

to refresh the form and therefore display the new content for that lo

method called simply adds the proper unit to the different temperat

Fahrenheit. What happens next is the creation of the icon that will ap

area representing the current temperature.

TO ADD SUPPORTING BACKGROUND CODE

1. At the very top of Main.vb, add the following Imports statements

1 Imports System.Runtime.InteropServices

2 Imports System.Net

2. At the top of the class, add the following lines just below Public C

Public Shared currentTemperature As Double

Public Shared currentLocationCode As String = My.Settings.CurrentLoc

Public Shared currentLocation As String = My.Settings.CurrentLocat

Public Shared currentUnit As String = My.Settings.CurrentUnit

The first line of code is declared as a Public Shared field named cu

shared field simply means the field doesn’t belong to any particu

but that there is only one for the entire class. The currentLocation

and currentUnit fields found in the next lines are also shared field

from the user settings, but they will change once you complete th

are also used to carry the changes made in the Options form bac

3. Add the following UpdateWeather method:

15 Public Sub UpdateWeather()

16 Try

17 Me.tsmiRefresh.Enabled = False

18 Me.tsmiOptions.Enabled = False

19 Me.startBackgroundGetCurrentWeather()

20 Me.tsmiRefresh.Enabled = True

21 Me.tsmiOptions.Enabled = True

22 Catch webEx As WebException

219
Chapter 9: Building Your Own Weather Tracker Application

23 MessageBox.Show(_

24 “MSN Web service currently unavailable” + vbCrLf + _

25 “Retry later using the Refresh Weather Info menu.”, _

26 “Web Exception”)

27 Me.tsmiRefresh.Enabled = True

28 Catch ex As Exception

29 MessageBox.Show(_

30 “Unknown problem. Error message:” + vbCrLf _

31 + ex.Message + vbCrLf + _

32 “Please, retry later!”, “Unknown error”)

33 Me.tsmiRefresh.Enabled = True

34 End Try

35 End Sub

The UpdateWeather method initiates the update of the weather data by calling the start-

BackgroundGetCurrentWeather method you added earlier. The weather data needs to be

updated when the location is changed or when the Refresh Weather Info menu choice is

clicked in the context menu of the notify icon. The UpdateWeather method also enables

or disables menu choices on the context menu as appropriate.

Completing the Core Weather Tracker Functionality

In the next sections, you will add more code to set up a working version of the Weather

Tracker application. This includes creating the icon, verifying connectivity, verifying weather

Web service availability, and performing other tasks.

First you will add code to create and destroy the icon in the notification area. You can

review the code, but I won’t discuss it in much detail because GDI+ and COM “interop” are

subjects that are too advanced for this book. However, you can refer to the comments within

the code to learn more.

TO ADD THE CREATE AND DESTROY NOTIFICATION ICON CODE

1. In Main.vb, add the following CreateIcon method:

1 Private Sub CreateIcon(ByVal temperature As Integer)

2 Dim displayString As String

on: Build a Program Now!
220 Microsoft Visual Basic 2008 Express Editi

 3 Dim drawnIcon As Bitmap

 4 Dim brushToDrawString As SolidBrush

 5 Dim iconColor As Color

 6 Dim iconGraphic As Graphics

 7 Dim fontFamily As New FontFamily(“Arial”)

 8 Dim IconFont As New Font(_

 9 fontFamily, _

10 11, _

11 FontStyle.Regular, _

12 GraphicsUnit.Pixel)

13

14

15 If (currentUnit = “F”) Then

16 If (temperature = Integer.MinValue) Then

17 displayString = “NA”

18 iconColor = Color.Red

19 ElseIf (temperature > 100) Then

20 iconColor = Color.Red

21 displayString = (temperature - 100).ToString()

22 ElseIf ((temperature < 32) And (temperature > 0)) Then

23 iconColor = Color.Violet

24 displayString = temperature.ToString()

25 ElseIf (temperature < 0) Then

26 iconColor = Color.Blue

27 displayString = (temperature * -1).ToString()

28 Else

29 iconColor = Color.White

30 displayString = temperature.ToString()

31 End If

32 Else

33 If (temperature = Integer.MinValue) Then

34 displayString = “NA”

35 iconColor = Color.Red

36 ElseIf (temperature > 38) Then

37 iconColor = Color.Red

38 displayString = (temperature).ToString()

39 ElseIf (temperature < 0) Then

40 iconColor = Color.Violet

41 displayString = (temperature * -1).ToString()

42 ElseIf (temperature < -18) Then

43 iconColor = Color.Blue

44 displayString = (temperature * -1).ToString()

221
Chapter 9: Building Your Own Weather Tracker Application

45 Else

46 iconColor = Color.White

47 displayString = temperature.ToString()

48 End If

49 End If

50

51 ‘ Start by creating a new bitmap the size of an icon

52 drawnIcon = New Bitmap(16, 16)

53

54 ‘To draw the string we need a brush

55 brushToDrawString = New SolidBrush(iconColor)

56

57 ‘ Creating a new graphic object so that we

58 ‘ can call the drawstring method with our

59 ‘ temperature or NA if there is no temp.

60 iconGraphic = Graphics.FromImage(drawnIcon)

61

62 ‘ Now we are drawing the temperature string onto

63 ‘ graphic and therefore on the bitmap.

64 iconGraphic.DrawString(displayString, IconFont, _

65 brushToDrawString, 0, 0)

66

67 ‘ We are getting ready to convert the bitmap into

68 ‘ an icon and to set the notifyWeather.Icon with

69 ‘ this newly created icon

70 Dim hIcon As IntPtr = drawnIcon.GetHicon()

71 Dim customMadeIcon As Icon = _

72 Drawing.Icon.FromHandle(hIcon)

73 notifyWeather.Icon = customMadeIcon

74

75 ‘Now that we’re done manipulating the new icon

76 ‘ we need to destroy the unmanaged resource,

77 ‘ otherwise we’ll have a handle leak.

78 DestroyIcon(hIcon)

79 End Sub

2. Add the following DestroyIcon method:

57 ‘ The GetIcon method generated an unmanaged handle

58 ‘ that we need to take care of; otherwise, there

59 ‘ will be a handle leak.

ition: Build a Program Now!

, go to the events list, and

r Tracker. In this code,

plication by using its name

e manner that the About

s drawn in the notification

itive results, in which case

ing as expected, the pro-

ontext menu strip, double-
222 Microsoft Visual Basic 2008 Express Ed

60 <DllImport(“user32.dll”, EntryPoint:=”DestroyIcon”)> _

61 Public Shared Function DestroyIcon(_

62 ByVal hIcon As IntPtr) As Boolean

63 End Function

TO FINISH THE MAIN FORM

1. In Design view, select the Main form. In the Properties window

double-click the Load event.

2. Add the following code to the Main_Load event handler:

 1 Private Sub Main_Load(ByVal sender As Object, ByVal e As _

 System.EventArgs) Handles Me.Load

 2 ‘Changing the title of our main form with the

 3 ‘application name and the version

 4 Me.Text = My.Application.Info.Title + “ “ + _

 5 My.Application.Info.Version.ToString()

 6

 7 ‘Creating temporarily the NA icon.

 8 Me.CreateIcon(Integer.MinValue)

 9 tsmiRefresh.Enabled = False

10 Me.UpdateWeather()

11 End If

12 End Sub

The Main_Load event handler is the starting point for Weathe

you’re using the My code construct to build the title of the ap

and the version stored in the assembly parameters in the sam

box uses this information. Next, a red NA (not available) icon i

area and remains there until the Web service returns with pos

the temperature will be drawn as an icon. If everything is work

cess for obtaining the weather data starts.

3. In Design view, click cmsNotify in the component tray. In the c

click the Refresh Weather Info menu item.

223

Weather Links

You may be wondering what

the link is between the index

and the filename and who is

creating that link. This is a con-

vention used by many weather

providers on the Internet; there-

fore, this is something that will

work with many services if you

want to add some later.
Chapter 9: Building Your Own Weather Tracker Application

4. Add the following code to the tsmiRefresh_Click event handler. This code initiates an

update of the weather data when the Refresh Weather Info menu item in the context

menu is clicked.

33 Private Sub tsmiRefresh_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles tsmiRefresh.Click

34 Me.tsmiRefresh.Enabled = False

35 Me.UpdateWeather()

36 End Sub

5. In Design view, select all the controls on the Main form. Set the BorderStyle property to

None. (You might need to click the Properties button at the top of the Properties window

to see the list of properties.)

You need to copy all of the weather forecast images from your companion content folder

to the same folder where the Weather Tracker application is located. Specifically, you need

to create a folder called Images and copy all of the *.tif weather image files into this folder.

You’ll do this next.

TO ADD WEATHER ICONS

1. In Solution Explorer, right-click the Weather Tracker project, select Add, and then select

New Folder. Name the folder Images.

2. Using Windows Explorer, copy the *.tif images (1.tif through 47.tif) from the companion

content to the Images folder you just created. (The default location for the compan-

ion content is Documents\Microsoft Press\VB 2008 Express\Chapter9\Images.)

3. In Solution Explorer, right-click the Images folder, select Add, and then select Existing

Item. The Add Existing Item dialog box appears.

4. In the Files of Type drop-down list, select Image Files.

5. Make sure you are looking in the Images folder, and select all the .tif files. To select all the

files, you can press Ctrl+A, or you can use Shift-click.

on: Build a Program Now!

 add the images to the

hen, while pressing the

opy to Output Directory

Build Action property is

ys in Fahrenheit, and if

vide a small tool to do

e data points are in

ve the application time

rt) _

 32)

re - 32)

ecast - 32)

ecast - 32)
224 Microsoft Visual Basic 2008 Express Editi

6. When all the .tif files have been selected, click the Add button to

Weather Tracker project.

7. In Solution Explorer, select all the .tif files. First, select 1.tif, and t

Shift key, select the last .tif file.

8. With all the .tif files selected, in the Properties window, set the C

property to Copy Always, as shown in Figure 9-9. Make sure the

set to Content.

TO ADD UNIT LABELS AND A CONVERSION UTILITY

The data that comes back from the MSN Weather service is alwa

the user wants to have the information in Celsius, you’ll need to pro

that. The main form doesn’t contain any indication about whether th

Fahrenheit or Celsius, which is why you need a conversion tool to gi

to add the degree symbol and the unit.

1. Add the following code to Main.vb to do both:

Public Sub ConvertToMetric(ByRef report As WeatherReport.WeatherRepo

 report.CurrentTemperature = 5 / 9 * (report.CurrentTemperature -

 report.FeelsLikeTemperature = 5 / 9 * (report.FeelsLikeTemperatu

 report.MaxTemperatureForecast = 5 / 9 *(report.MaxTemperatureFor

 report.MinTemperatureForecast = 5 / 9 *(report.MinTemperatureFor

End Sub

Public Sub UpdateUnitLabels()

 CurrentTemperatureLabel1.Text = _

 CurrentTemperatureLabel1.Text & “°” & currentUnit

 FeelsLikeTemperatureLabel1.Text = _

 FeelsLikeTemperatureLabel1.Text & “°” & currentUnit

 MinTemperatureForecastLabel1.Text = _

 MinTemperatureForecastLabel1.Text & “°” & currentUnit

 MaxTemperatureForecastLabel1.Text = _

 MaxTemperatureForecastLabel1.Text & “°” & currentUnit

 HumidityLabel1.Text = HumidityLabel1.Text & “%“

End Sub

Figure 9-9
Weather icons added to the project

225
Chapter 9: Building Your Own Weather Tracker Application

Testing Weather Tracker

Now you will see whether your application works. Press F5 to run Weather Tracker. If you

have any build errors, review the errors on the Error List tab, and fix them. If necessary, you

can review the completed application in the Complete folder. When you run the application,

you should see your splash screen and then see a red NA in the notification area indicating

that the current temperature has not been retrieved. If the MSN Weather service is available,

you should see the current temperature for the Redmond, Washington, area in the notifica-

tion area. (Be patient. Depending on the current Web service load, you might have to wait a

few moments.) If you have to wait, you’ll see that a little animated image displays while the

data is coming back from the MSN server. You just have to enable it! When you double-click

the temperature in the notification area, you should see detailed weather information, as

shown in Figure 9-10. Right-click the temperature to see the context menu. When you have

finished, exit the application.

Figure 9-10
The Weather Tracker application displaying weather data from a Web service

tion: Build a Program Now!

y isn’t our intent. There-

e city they want to moni-

nd whenever users restart

. Remembering users’

tter experience.

xt if no city is found.

ple, if the user enters

the control indicating

circle with an exclamation

isplayed to explain what

or example, you can use

 user addresses the error,

icon disappear.

ents group to the form.

hile in the current city

e’s something in the text
226 Microsoft Visual Basic 2008 Express Edi

Working with the Options Dialog Box

Currently, the location is set to a particular value, and that reall

fore, you will use the Options dialog box and let users search for th

tor. Once the location code is selected, it will be persisted to disk, a

the application, it will be restored to the last location they specified

settings from one execution to another will provide them with a be

You will use the error provider control to display appropriate te

The error provider control displays error information. For exam

invalid information in a text box, an error icon is displayed next to

that an error has occurred. By default, the error icon is a small red

point. When the user clicks the error icon, an error description is d

is wrong to the user. You can change how the error is presented. F

a different error icon, or you can make the error icon blink. Once a

you set the error description to an empty string to make the error

TO VALIDATE USER INPUT

1. Open the Options form in Design view.

2. In the Toolbox, drag an ErrorProvider control from the Compon

The control appears in the component tray.

3. Name the control ErrorProviderCurrentLocation.

4. Double-click the OK button.

5. Add the following code to the btnOk_Click event handler:

UpdateCurrentInfo()

Me.DialogResult = Windows.Forms.DialogResult.OK

Me.Close()

6. You’ll add some code to support when the user presses Enter w

text box. You can see that you have to launch the search if ther

227
Chapter 9: Building Your Own Weather Tracker Application

box. To capture the individual keys, you implement the KeyDown event handler. It fires

as soon as the user presses a key. When the Enter key is pressed, you’ll make a call to

another MSN Web service to get the list of cities that have keywords in their metadata

that matches your query. It’s also here that you’ll set the error provider to alert a user

that the search didn’t make any progress.

 Private Sub txtCurrentCity_KeyDown(ByVal sender As System.Object, _

 ByVal e As System.Windows.Forms.KeyEventArgs) Handles _

 txtCurrentCity.KeyDown

 If (e.KeyCode = Keys.Enter) Then

 Me.Cursor = Cursors.WaitCursor

 UpdateListBox()

 If (lbPossibleCities.Items.Count = 0) Then

 ErrorProviderCurrentLocation.SetError(txtCurrentCity, _

 “No results for: “ & txtCurrentCity.Text)

 Else

 ErrorProviderCurrentLocation.SetError(txtCurrentCity, “”)

 End If

 End If

 Me.Cursor = Cursors.Default

 End Sub

7. The UpdateListBox method says it all; this method will contact the MSN Weather service

for the currently entered city, country, or other information and bind this list of KeyValue-

Pair classes to the list box Items collection. The reason the KeyValuePair class has been

used here is simple: you need locationCode to make the call to the MSN Web service, and

you need the other one to display on the form as the current monitored location.

Private Sub UpdateListBox()

 Dim Locations As List(Of KeyValuePair(Of String, String))

 Dim myMSNWeather As New MSNWeatherData()

 Locations = myMSNWeather.GetLocations(txtCurrentCity.Text)

 lbPossibleCities.DataSource = Locations

 lbPossibleCities.DisplayMember = “Value”

 lbPossibleCities.ValueMember = “Key”

End Sub

ition: Build a Program Now!

 and location, as well as

values with the application

r the Main form to update

tInfo method is called
228 Microsoft Visual Basic 2008 Express Ed

TO SAVE SETTINGS AND UPDATE WEATHER DATA

1. In Options.vb, add the following UpdateCurrentInfo method:

Private Sub UpdateCurrentInfo()

 If ((txtCurrentCity.Text <> String.Empty) And _

 (lbPossibleCities.Items.Count <> 0)) Then

 If (Me.lbPossibleCities.SelectedValue.ToString() <>

 My.Settings.CurrentLocationCode) Then

 My.Settings.CurrentLocationCode = _

 Me.lbPossibleCities.SelectedValue.ToString()

 My.Settings.CurrentLocation = _

 Me.lbPossibleCities.SelectedItem.Value.ToString()

 Main.currentLocation = _

 Me.lbPossibleCities.SelectedItem.Value.ToString()

 Main.currentLocationCode = _

 Me.lbPossibleCities.SelectedValue.ToString()

 End If

 End If

 If rbCelsius.Checked = True Then

 My.Settings.CurrentUnit = “C”

 Main.currentUnit = “C”

 Else

 My.Settings.CurrentUnit = “F”

 Main.currentUnit = “F”

 End If

 My.Settings.Save()

 Main.UpdateWeather()

 End Sub

The UpdateCurrrentInfo method saves the user’s location code

the unit selected to display the temperature, and stores those

settings. It also calls the UpdateWeather method in the code fo

the weather data for the new location code. The UpdateCurren

when the user clicks OK in the Options dialog box.

229

re 9-11
rror provider control indicating an
Chapter 9: Building Your Own Weather Tracker Application

Testing Weather Tracker Options

Now you will test the Options dialog box. Press F5 to run Weather Tracker. Once the

splash screen disappears, right-click the icon in the notification area, and click Options. In

the Options dialog box, test the location name. For example, try typing some garbage,

and press Enter. In this case, you should get the error provider to the left of the text box,

as shown in Figure 9-11, letting you know that there were no results for the search query

you made!

When you have finished, type a valid location name, and click OK. Select the city from

the list that matches the one you’d like to monitor. It is quite fast, and you should see

weather data for the new location code.

You should be proud of yourself. You’ve developed an application with numerous

complex features, and it works! The Weather Tracker application accomplishes the basic

features established at the beginning of the chapter. There is plenty of room for enhance-

ment. Now it’s time to learn how to distribute Weather Tracker or another application.

And Now, Just ClickOnce

The ClickOnce technology has been available since .NET Framework 2.0. It’s a fantastic

feature that lets you customize how your applications and tools get onto other people’s

machines. It’s very easy—almost as easy as deploying Web applications, which often entails

merely copying files onto a server. With ClickOnce, you, the developer, can distribute your

application via a robust and reliable mechanism. You can deploy on Web servers, on file

servers, or onto CDs/DVDs. In addition, you can add the .NET Framework to your distribution

package along with SQL Server 2005 Express Edition if your application needs it. ClickOnce

handles rollback and uninstall well, and it’s a charm for pushing new updates. In this case,

you’ll deploy to a CD/DVD.

Figu
The e
error

on: Build a Program Now!

 included with the

t for all the *.tif images in

ter.)

 Build menu.

 select Properties to

ne shown in Figure 9-12.

e included in the instal-

be listed. Click OK.

hen the installer runs on

If they are not present,
230 Microsoft Visual Basic 2008 Express Editi

TO PACKAGE AND PUBLISH YOUR APPLICATION

1. To ensure that all the *.tif files representing the weather icons are

installation, make sure the Build Action property is set to Conten

Solution Explorer. (This process was described earlier in the chap

2. Rebuild the application by clicking Build Weather Tracker on the

3. In Solution Explorer, right-click the Weather Tracker project, and

open the Project Designer.

4. Click the Publish tab. You should see a screen that looks like the o

Figure 9-12
Publish tab in the Project Designer

5. Click the Application Files button to see the list of files that will b

lation. All the *.tif files (as well as the .exe and other files) should

You now want to select the prerequisites for your application. W

the user’s machine, it will check for the presence of these items.

231
Chapter 9: Building Your Own Weather Tracker Application

the installer will by default download them from Microsoft.com or another source that

you have configured.

6. Click the Prerequisites button. In the Prerequisites dialog box, select the .NET Framework

3.5 and Windows Installer 3.1 check boxes. Make sure the Download Prerequisites from

the Component Vendor’s Web Site option is selected. Click OK.

You can also set the Updates settings, which basically help you decide how your users will

update their application and how frequently you want your application to automatically

check for new updates. You won’t do it here, but it’s really trivial; take a look by clicking

the Updates… button.

7. Click the Publish Wizard button.

The first page of the wizard appears, as shown in Figure 9-13, asking you to specify a

location to publish the application.

Figure 9-13
Publish Wizard’s first page

ition: Build a Program Now!

ct File System on the left,

to publish your application.

can use the Create New

hed, click the Open but-

n. It could be a Web site,

CD-ROM or DVD-ROM

 for updates every time it

ave your application check

 for Updates choice, and

cation you selected

uring the installation, a

 application, use Control

application by simply

 get you started creating
232 Microsoft Visual Basic 2008 Express Ed

8. Click the Browse button. In the Open Web Site dialog box, sele

and then select a location on your computer where you want

I suggest you create a new folder named WeatherTracker. You

Folder icon at the upper left to create a new folder. When finis

ton, and then click Next.

9. On the next page, select how the user will install the applicatio

a UNC share on a network, or a CD or DVD. Select the From a

choice, and click Next.

10. The next page asks whether you want your application to look

starts. Because you are deploying on a CD or DVD, you won’t h

for updates. Select the default The Application Will Not Check

click Next to continue.

11. Click Finish to publish your application.

After a few moments, setup files will be created at the folder lo

earlier. To test the installation, double-click the Setup.exe file. D

shortcut will be added to the Programs menu. (To uninstall the

Panel.)

Once the installation works as expected, you can deploy your

burning the installation files onto a CD or DVD.

ClickOnce has more features, but this short demonstration will

your own installations.

N O T E
 Every time you publish your

application, the published version

number (not the application ver-

sion number) will be increment-

edthat is, it will become version

1.0.0.0, 1.0.0.1, and so on.

N O T E
During the installation, if you get

an error message that the appli-

cation validation did not succeed

or you receive another error mes-

sage, try republishing your appli-

cation and testing again.

233

In Summary…

d I hope you’ve had some

ition. If you like what you’ve

eginning. There’s so much

 the types of applications you

jects you can create! You’ll be

veloping an application is one

their applications, and you will

 chances are it could be useful

 providing them with the fruits

nd help others in the process

x.com/) for a sample of cool

com/coding4fun/), where you’ll

gramming skills.

d/. I haven’t updated my blog

ewest endeavor at Microsoft

about my new baby. It’s still

 time to see the news about
Chapter 9: Building Your Own Weather Tracker Application

Congratulations on getting this far! You’ve learned a lot, an

fun developing applications using Visual Basic 2008 Express Ed

learned (and I certainly hope so), then your education is just b

more to see and try. This book has provided a small sample of

can create. My advice to you is to continue thinking of fun pro

surprised at how much you can accomplish. In my opinion, de

the greatest feelings of accomplishment. People are proud of

be too!

If you happen to create an application that’s useful to you,

for others as well. In the end, you might be helping people by

of your labor. You can also join development projects for fun a

while learning a great deal. Visit Codeplex (http://www.codeple

project examples. Look also at Coding4Fun (http://blogs.msdn.

find plenty of interesting and new ways of using your new pro

You can also visit my blog at http://blogs.msdn.com/ppellan

for a while because I’ve been busy writing this book, but my n

will enable me to blog about supercool technologies and talk

under wraps, but stay alert and come to my blog from time to

the new project. Until then, happy developing!

arent way to create a link

 form and a data source

used to find the defects in

binary application library

thods of a class or object;

changed

ndicates something has

tool for executing programs

) A set of code libraries for

text document to another

ed to represent a program,

nvironment) Computer

rs write computer programs

 specialized types from

d extend the existing

to re-implement it.

235
A
argument A variable that is passed to a subprogram

B
black box testing Functional testing of a computer

 program to ensure it performs correctly

breakpoint A pause or stopping place in a program,

 intentionally inserted to help with debugging

C
class The basic building block of object-oriented program-

ming; it defines the fields, properties, methods, and events

of an object

compiler A computer program that translates the instruc-

tions written in one computer language into output in

another computer language; compilers translate source code

into some type of machine language that can be executed

by a computer

console application An application that is run from a

 command prompt with no Windows or Web interface

context-sensitive menu A menu that provides different

choices to the user depending on when it is accessed

controls Components of a graphical user interface, such as

text boxes or buttons

D
data member Data encapsulated within a class or an object

database A collection of data that is stored in files using a

systematic structure

data binding An easy and transp

between a control on a Windows

from your application

debugger A computer program

another program

DLL (Dynamic Link Library) A

file format in Microsoft Windows

E
encapsulation Hides private me

ensures that an object cannot be

event A software message that i

happened in the program

execution engine Development

F
FCL (Framework Class Libraries

common programming tasks

H
hyperlink A reference in a hyper

document or location

I
icon A small image or picture us

file, or other object

IDE (Integrated Development E

software tools that help develope

inheritance The ability to create

existing objects that can share an

object’s behavior without having

GlossarY

Glossary

ears on the screen while

nformation to the user

appears once the program

 A version of SQL Server

 build applications by pro-

 also free and easy to use

or words

able icons that activate dif-

formation provided at the

held

y which users interact with

formation temporarily for

 A streamlined version of

s, students, and novices with

ing and development tool

 software that provides

h as word processing, data-

lations

ion (WPF) Provides a

ns for Windows Vista and

user interface, documents,

ition: Build a Program Now!
instance A manifestation of a class

J
Jscript An Active Scripting Engine; the Microsoft version of

JavaScript

L
Language Integrated Query (LINQ) Adds query capabili-

ties to .NET programming languages (such as Visual Basic),

enabling you to query data from a SQL Server database,

XML, in-memory arrays and collections, ADO.NET datasets,

or any other remote or local data source that supports LINQ

M
method Procedure or function; a piece of code associated

with a class or object

Microsoft .NET A software development platform devel-

oped by Microsoft

O
override A class or object can replace a behavior it has

inherited

P
Perl A programming language that supports both proce-

dural and object-oriented programming

programming language A method for providing instruc-

tions to a computer

property A quality of an object

Python An object-oriented computer programming

 language

R
reference The address of the memory space used to store

information about a variable

S
splash screen An image that app

a program is loading; it provides i

about the loading process and dis

is loaded

SQL Server 2005 Express Edition

2005 designed to help developers

viding a powerful database that is

string A sequence of characters

T
toolbar A row or section of click

ferent functions of a program

tooltip Short, context-sensitive in

point where the mouse pointer is

U
user interface (UI) The means b

a computer program

V
variable A structure that holds in

use later in a program

Visual Basic 2008 Express Edition

Visual Basic that provides hobbyist

an easy-to-use Windows programm

W
Windows application Computer

various functions for the user, suc

base queries, or spreadsheet calcu

Windows Presentation Foundat

framework for building applicatio

blends together the application’s

and media content

236 Microsoft Visual Basic 2008 Express Ed

Click event connected to, 55–56
description of, 76
ttons. See also Button control,

Windows Forms

adding to Web browser
application, 106–07

linking to Web browser functions,
105

modifying navigation button
behavior, 107–08

renaming when adding, 106–07
 Ref, passing arguments, 133
 Val, passing arguments, 133

rTracker
creating with Visual Basic 2008

Express, 151–53
data entry, 159–62
dataset for, 166–72
diagram, 150
table relationships, 155–59
tables, 153–55
lsius to/from Fahrenheit

conversion tool, 224
arArray, 135

eckBox control, Windows Forms,
77

sses
ADO.NET, 163
all classes deriving from Object

class, 8

common classes and methods in
My namespace, 68–70

defined, 235
DLLs for grouping, 126
examples of use of, 5–9

237
Index
Symbols
’ (apostrophe), commenting code,

38
. (period), for opening IntelliSense,

64

A
About dialog box

adding to Web browser
application, 93–94

attaching to Weather Tracker, 201
creating, 199–201
linking to Help menu, 94–96

abstraction, 211–12
Access databases, Microsoft, 163–64
actions. See methods

Add New Diagram, table
relationships, 155–59

Add New Item, splash screens, 86
Add New Table, database tables,

153
Add Reference, 127
Add Table dialog, 177
Add to List Below drop-down list,

menu items, 192–94
ADO.NET

data binding and, 165
Data Connection page, 166
Data Sources window, 165–66,

168
LINQ and, 164
overview of, 163–64
.xsd (XML schema document)

and, 166–67
American Standard Code for

Information Interchange
(ASCII), 26

ANSI/ISO standards, 149
antispyware software

installing Visual Basic 2008
Express and, 16

updating, 22
antivirus software

installing Visual Basic 2008
Express and, 16

updating, 22
apostrophe (’), commenting code,

38
application creation, 25–46

comparing application types,
26–27

console applications, 31–39
customizing IDE, 39–41
overview of, 25
starting Visual Basic 2008 Express

IDE, 28–31
Windows applications, 41–45

application deployment
ClickOnce, 229
packaging and publishing,

230–32
Application Files button, 230
applications

debugging, 126
references added to, 127–28
types created with Visual Basic

Express, 10
arguments. See also parameters

defined, 235
passing By Ref and By Val, 133
passing data to methods, 54

arrays
LINQ and, 164
loops and, 135
zero-basis of, 134

ASCII (American Standard Code for
Information Interchange), 26

As keyword, IntelliSense and, 62

Assembly Information, 89–90, 201
AutoHide, enabling/disabling, 60

B
background performance

supporting code for background
tasks, 218–19

of tasks, 215–18
in Weather Tracker, 211

BackgroundWorker control,
Windows Forms, 211, 215–18

Basic SQL, 149
binary data types, 160
binding navigators, 172. See also

data binding

binding sources, 172. See also data

binding

bitmap images, modifying splash
screen images, 92

black box testing
defined, 235
testing own code, 98

breakpoints
debugging tools/techniques,

128–29
defined, 235

bugs. See debugging tools/

techniques

build. See compile

Build Action property, 230

Build menu, 230
Button control, Windows Forms

adding to Web browser
application, 53

bu

By
By

C
Ca

Ce

Ch

Ch

cla

 Index

ion: Build a Program Now!

version utility, Fahrenheit to/
from Celsius, 224

rdinates, control alignment, 60
y Always property, Properties
window, 170

yright information, modifying,
90

y to Output Directory property,
Properties window, 169, 170

te and Destroy Icon, Weather
Tracker, 219–22
teIcon method, 219–21

te Project, options for building
new applications, 31

 (Community Technology
Preview), 17

+Alt+Break (Stop Debugging),
137–38

+A (Select All), 223
+Shift+F8 (Step Out), 133–35
+Shift+S (Save All), 38, 156
+spacebar, for opening

IntelliSense, 64
+S (Save), 38

abase Diagrams node, 155–59
abase Explorer
dding tables to CarTracker

database, 153–55
how Table Data, 159
erifying connection status of a

database, 152
base management system
(DBMS), 142

bases, 141–86
DO.NET. see ADO.NET

arTracker diagram, 150
omponent tray, 172–73
onnection status, 152–53
reating with Visual Basic 2008

Express, 151–53
ata binding, 163, 173–75
ata entry, 159–62
238 Microsoft Visual Basic 2008 Express Edit

instances of, 54
MSN Weather data class, 211–15
namespaces and, 48–49

class libraries, types of applications
created with Visual Basic 2008
Express, 10

Click events
button control and, 55–56
Navigate menu and, 110

ClickOnce deployment, 229–32
key features of Visual Basic 2008

Express, 13
overview of, 229
publishing and packaging

applications with, 230–32
CLR (Common Language Runtime)

foundation role in .NET
framework, 3

as .NET execution engine, 2
unhandled exceptions and, 134

code
adding code for Create and

Destroy Icon, 219–22
for background tasks, 218–19
black box testing, 98
breaking long lines of, 81
closing application when

modifying, 55
commenting, 80–81
console applications, 37–39
exception handling, 137–38
learning to read, 39
reusing, 66
wiring source code to events,

79–82
code editors

accessing My namespace, 71

IntelliSense and, 62
code snippet editor, 82
code snippets, 66–68

creating, editing, debugging, 82
invoking, 67
key features of Visual Basic 2008

Express, 11

tasks performed by, 66
working with, 67–68

Code view
adding new method, 92
split window with Design view,

115
viewing breakpoints and source

code, 128
Codezone Community, 36
collections

Items Collection Editor, 192–94
LINQ and, 164

columns
composite keys, 146
database tables, 142
identity, 154, 160
viewing column properties, 155

ComboBox control, Windows Forms
data binding example, 173–75
description of, 77

combo boxes. See ComboBox

control, Windows Forms

command prompt. See console

applications

command window. See console

applications

comments, code, 38, 80–81
Common Controls

dragging controls from, 191
WebBrowser control, 52

Common Language Runtime. See

CLR (Common Language

Runtime)

community access, key features of
Visual Basic 2008 Express, 13

Community Technology Preview
(CTP), 17

compile
Build Action property, 230

console application, 38
Compile (F5), 55
compilers

defined, 235
error detection/handling in real-

time, 68–70

components, installed during
installation of Visual Basic 2008
Express, 21

component tray, databases, 172–73
composite keys, columns, 146
console applications

coding, 37–39
defined, 235
help options for, 34–37
overview of, 26–27
Solution Explorer and, 32–33
steps in building, 31–32
types of Visual Basic 2008 Express

applications, 10, 25
constraints

data integrity and, 159
foreign keys and, 147–48

context menus
defined, 235
notification capability associated

with, 191, 195–96
Options dialog box attached to,

204
ContextMenuStrip control, Windows

Forms, 192
continuing debugging, 130–32
controls

adding to tool strip, 108–09
adding to Web browser, 52
alignment coordinates, 60
connecting to functions they

perform, 54–56
defined, 235
key features of Visual Basic 2008

Express, 12
list of common, 75–78
naming, 73
populating with information,

102–04
procedure directives for, 93
rearranging order of, 100–101
selecting, 87
Text property, 54
variables, 57

con

coo
Cop

cop

Cop

Crea

Crea

Crea

CTP

Ctrl

Ctrl
Ctrl
Ctrl
Ctrl

Ctrl

D
Dat
Dat

a

S
v

data

data
A
C
c
c
c

d
d

overview of, 131–32
stopping/restarting debugging

and, 135
mail, code snippets for, 66
capsulation, 54, 235
d Using block, 133

or handling
data integrity and, 161–62
in real-time, 68–70
testing Weather Tracker, 225
orProvider control, Windows

Forms, 226
C key, for removing IntelliSense

contextual window, 65
ent-driven applications, 78–82
linking About dialog to Help

menu, 94–96
overview of, 78–79
wiring source code to events,

79–82
ents
Click events, 110
defined, 235
DocumentCompleted event, 104
FormClosing events, 198–99

KeyUp event, 110

linking About dialog to Help
menu, 94–96

Load events, 102–04, 222
overview of, 78–79
wiring Navigate dialog to

Navigate menu, 97–99
wiring source code to, 79–82
ception Assistant, 134
ception handling
code for, 137–38
DivisionByZero exception, 136

IndexOutOfRangeException, 134

unhandled exceptions, 133–34
ecution engines, 235
perimentation, importance of, 57
tensible Application Markup

Language (XAML)
WPF and, 113
XAML Editor as key features of

Visual Basic 2008 Express, 12

239
Index

data integrity, 143–45
dataset for CarTracker, 166–72
defined, 235
foreign keys, 147–48
interacting with relational

databases, 148–49
LINQ queries. see LINQ

(Language Integrated

Query)

normalization, 143
null values and, 145
overview of, 141–42
primary keys, 146–47
summary of, 186
table relationships, 155–59
tables, 153–55
table structures, modifying, 172
what is in, 142

data binding
ADO.NET and, 163
binding controls to data source

for Weather Tracker, 190
defined, 165, 235
with domain tables, 173–75
Smart Defaults, 174

Data Connection page, ADO.NET, 166
data-enabled applications, key

features of Visual Basic 2008
Express, 12

data entry, databases, 159–62
data integrity

foreign keys and, 161–62
overview of, 143–45
verification of, 161–62

data management, 141. See also

databases

data members, 235
data providers, ADO.NET and, 163
Dataset Designer, 175
DataSet objects, in ADO.NET, 163
datasets

for CarTracker application,
166–72

defined, 165
typed datasets, 172

data sharing, ADO.NET and, 163
Data Source Configuration Wizard,

166, 207
data sources

adding new, 207
ADO.NET, 163–64
for main form control in Weather

Tracker, 190–91
Data Sources window, ADO.NET,

165–66, 168
data types

LINQ and, 182–83
null values and, 144

DBMS (database management
system), 142

debuggers
debugging applications, 126
defined, 235
encountering breakpoints, 129

Debugger visualizers, key features
of Visual Basic 2008 Express, 13

debugging tools/techniques,
125–39

breakpoints, locals, Edit and
Continue, and Visualizers,
128–29

code for exception handling,
137–38

continuing debugging, 130–32
debugging applications, 126
DLL for grouping classes, 126
Immediate window, 138
out-of-range problems, 135–37
overview of, 125
references added to applications,

127–28
starting debugging, 129–30
stepping out of code, 132–35
summary of, 139

Debug menu
Immediate window, 138
Start Debugging, 39
Start Without Debugging, 40
Step Out command, 132–35

Stop Debugging command,
137–38

Watch tab, 130, 138
Debug mode, 129–30
declarative programming, 113
design layout, for Web browser

application, 49
Design view

creating splash screens and, 87
split window with Code view, 115

DestroyIcon method, 221–22

development environment, key
features of Visual Basic 2008
Express, 13

dialog boxes, for user interaction,
93. See also by individual type

Dim keyword, IntelliSense and, 62

DirectX, WPF and, 112
Display method, Person class, 6

DivisionByZero exception, 136

DLLs (Dynamic Link Libraries)
defined, 235
for grouping classes, 126

Dock property, 175
documentation

key features of Visual Basic 2008
Express, 11

SQL and T-SQL, 162
DocumentCompleted event, 104
domain tables, data binding with,

173–75
Do Not Copy property, Properties

window, 170
DOS window. See console

applications

drop-down lists, 192–94
Dynamic Link Libraries (DLLs)

defined, 235
for grouping classes, 126

E
Edit and Continue feature

key features of Visual Basic 2008
Express, 13

e-
en
En

err

Err

ES

ev

ev

Ex
ex

ex
ex
Ex

on: Build a Program Now!

et Information Services (IIS),
204
 Collection Editor, 192–94

t, 236

oard, scrolling with, 65
own events, 227

p events, 110

aluePair class, 227

ord searches, queries, 45
ords, IntelliSense and, 62

l control, Windows Forms
scription of, 76
ap lines for aligning labels, 61
s. See Label control, Windows

Forms

uage Integrated Query. See LINQ

(Language Integrated Query)

les, 150
ies
Ls for grouping classes, 126
Ls (Framework Class Libraries)

in, 2
sing, 18
 (Language Integrated Query)
ta types and, 182–83
fined, 236
nction of, 3
erview of, 164
ing LINQ queries, 183–85
ox control, Windows Forms, 77
 events, controls and forms,
102–04, 222
ls command, Debug menu, 130
s, debugging tools/techniques,
128–29
240 Microsoft Visual Basic 2008 Express Editi

F
F1 (Help)

for accessing help, 34
keyword searches, 45

F5 (Compile), 55
F5 (Start Debugging), 39, 129–30
F8 (Step Into), 130–31
Fahrenheit to/from Celsius

conversion tool, 224
FCLs (Framework Class Libraries)

defined, 235
in .NET framework, 2

fields, shared, 218
File menu, New Project, 31, 42
filtering, IntelliSense, 63
filtering queries, LINQ, 183–84
foreign keys

data integrity and, 161–62
overview of, 147–48
table relationships and, 156–57

For loops, arrays, 134

formatting strings, 93
FormClosing events, 198–99

form designer, 49
form icons, 111
forms. See Windows Forms

applications

framework. See .NET framework

Framework Class Libraries (FCLs)
defined, 235
in .NET framework, 2

functions, methods as, 54

G
Getting Started pane, Start Page, 29
GPU (graphical processing unit), 112
graphical processing unit (GPU), 112
graphical user interface (GUI)

console applications not
requiring, 26

Windows applications and WPF
applications and, 27

GridStyle property, menu strips, 101

GUI (graphical user interface)
console applications not

requiring, 26
Windows applications and WPF

applications and, 27

H
handles, for resizing controls, 52
“Hello World”, as console

application, 26
Help (F1)

for accessing help, 34
keyword searches, 45

Help menu
accessing/using, 34
linking About dialog to, 94–96

help options, 34–37
HTTP, REST Web services and, 205
hyperlinks, 235

I
icons

Create and Destroy Icon, 219–22
defined, 235
form icons, 111
modifying, 89
personalizing applications with,

104–06
weather icons added to Weather

Tracker, 223–24
IDE (integrated development

environment)
defined, 235
main components, 30–31
Start Page, 29–30

identity, 146
identity columns, 154, 160
identity increment, 146
identity seed, 146
IDEs (integrated development

environments)
customizing Visual Basic 2008

Express IDE, 39–41

overview of, 25
starting Visual Basic 2008 Express

IDE, 28–31
If statements, arrays, 134

IIS (Internet Information Services),
204

Immediate window, debugging and,
138

Imports statement, 128, 218

IndexOutOfRangeException, 134

inheritance
defined, 235
in OOP examples, 7

Installation Options page, installing
Visual Basic 2008 Express and,
19

installing Visual Basic 2008 Express,
15–23

components installed with, 21
overview of, 15
preparation, 16
prerelease versions and, 17
side-by-side installation, 16
steps in, 18–20
summary of, 23
updates and, 22

instances
creating class instances, 54
defined, 236

integrated development
environment. See IDE

(integrated development

environment)

IntelliSense
code snippets, 66–68
filtering, 63
key features of Visual Basic 2008

Express, 11
LINQ queries and, 164
opening, 64
overview of, 62
selecting from list of options,

65–66
steps in use of, 64–65
as you type, 62–63

Intern

Items

J
Jscrip

K
keyb
KeyD

KeyU

KeyV

keyw
keyw

L
Labe

de
sn

label

Lang

.ldf fi
librar

DL
FC

licen
LINQ

da
de
fu
ov
us

ListB
Load

Loca
local

examples of use of classes, 5–9
MSDN Online video, 56
programming paradigms and, 4–5
tutorial on, 74

opening applications, 86, 199
opening IntelliSense, 64
Options dialog box, Weather Tracker

attaching form to context menu,
204

creating form for, 202–03
testing, 229
working with, 226–28

orphaned rows, 143
out-of-range problems, 135–37
override, 236
Overrideable keyword, 6–7

P
packaging applications, 230–32
parameters. See also arguments

parameters, passing data to
methods, 54

Perl, 236
pinning Toolbox, 60
pre-installation preparation, Visual

Basic 2008 Express, 16
prerelease versions, Visual Basic

2008 Express, 17
Prerequisites dialog box, publishing

applications and, 231
primary keys

creating relationships between
database tables, 157

foreign keys relationship to, 147
overview of, 146–47

procedure directives, 93
professional look and feel, 99
programming languages

console applications and, 26
defined, 236
programming paradigms and, 4–5

progress bars, adding to Web
browser application, 101–02

241
M
main form, Weather Tracker

adding weather information to,
207–10

data source for, 190–91
finishing, 222–23
illustration of, 190

managed applications, in .NET
framework, 2

MaxLength property, TextBox
control, 174

.mdf files, SQL Servers, 150
menu bar, main IDE components, 30
menu items

adding to Weather Tracker,
192–94

steps in adding to WPF version of
Web browser, 117–22

menu strips, style options,
101

methods
defined, 236
in My namespace, 68–70

in OOP examples, 6–7
as subroutines or functions, 54
writing, 80

Microsoft Access, 163–64
Microsoft .NET, 236
Microsoft T-SQL (Transact-SQL). See

T-SQL (Transact-SQL)

Microsoft Updates
installing new applications and, 22
installing Visual Basic 2008

Express and, 16
Microsoft Virtual PC 2007, 17
Microsoft Visual Web Developer

2008 Express Edition, 10
Microsoft Windows operating

systems. See Windows

operating systems

modal forms, 96
Most Valuable Professionals (MVPs),

37
MSDN feeds, 30

MSDN Library
installing Visual Basic 2008

Express and, 16, 19, 21
local help from, 36
videos from, 45

MSDN Online
help options, 36
OOP video, 56
query searches of forums, 37

MSN Weather Web service
MSN Weather data class, 211–15
weather information added to,

207–10
Weather Tracker connecting to,

206–07
Multiline property, TextBox control,

174
multithreaded programming with

callbacks, 211
MVPs (Most Valuable Professionals),

37
My namespace, 70–72

adding classes/methods to, 71
common tasks with, 72
high-level classes in, 71
key features of Visual Basic 2008

Express, 11–12
modifying Web browser

application and, 91–92
overview of, 70–71

N
names

controls, 73
project and application, 48–49
variables, 57

namespaces, for organizing classes,
48–49

naming collisions, 48–49
Navigate dialog box

adding to Web browser
application, 96–97

wiring to Navigate menu, 97–99

Navigate menu
Click events, 110
wiring Navigate dialog to, 97–99

NavigateToUrl method, 110

navigation controls
behavior options for navigation

buttons, 107–08
for navigating tables, 161

.NET framework
ADO.NET including .NET data

providers, 163
defined, 2
installing Visual Basic 2008

Express and, 21
SQL support, 149
what it is, 2–4

New Project
File menu, 42
options for building new

applications, 31
normalization, of data, 143
notification area

added to Weather Tracker, 191–94
associated with context menu

strip, 195–96
NotifyIcon control, Windows Forms,

191–94
null values, databases and, 145
NumericUpDown control, Windows

Forms, 78

O
Object class, 8

object-oriented programming.
See OOP (object-oriented

programming)

Online Help Settings dialog, 34–35
OOPLs (OOP Languages), 5
OOP (object-oriented

programming), 4–9
abstraction, 211–12
elements (classes, constructors,

objects, and methods), 5

 Index

ition: Build a Program Now!

Project Designer Query Builder real-time error detection/handling, Select All (Ctrl+A), 223
lect Item commands, 192–94
LECT query, 176–77
parators, adding to Weather

Tracker, 193
QUEL (Structured English Query

Language), 148–49
ift-click, for selecting all files, 223
ow All Files command, Solution

Explorer, 73
ow Table Data, Database Explorer,

159
utdown method, for stopping

applications, 196–99

de-by-side installation, 16
lverlight, installing Visual Basic

2008 Express and, 20. See also

WPF (Windows Presentation

Foundation)

zeHeight property, TextBox
controls, 174

zeWidth property, TextBox
controls, 174

art Captions, 169
art Defaults, 174
art tags
for accessing Items Collection

Editor, 192
compiler and, 68–69
key features of Visual Basic 2008

Express, 12
undocking controls from parent

container, 52
ap lines, for control alignment,

60–61
AP Web services, 205

ftware development kit (SDK),
Visual Studio, 150

lution Explorer
adding images to icons, 223–24
as main IDE component, 30
overview of, 32–33
renaming in, 73–74
Show All Files command, 73, 127
rt order, properties, 51
242 Microsoft Visual Basic 2008 Express Ed

adding references, 127
attaching forms to an application,

201
modifying applications, 88–90
user settings, 210–11

projects, Visual Studio
Create Project command, 31
creating, 50, 190
New Project command, 31, 42
overview of, 48–49
Recent Project pane, on Start

Page, 29
properties

defined, 236
list in Properties window, 51
modifying, 52
setting/retrieving content of data

members with, 54
sort order, 51
ToolStrip controls, 109
tree view option, 51
viewing, 155

Properties window
coordinates for control

alignment, 60
Copy to Output Directory, Copy

Always, and Do Not Copy
properties, 170

illustration of, 50
modifying properties, 52
renaming in, 73
sort order, 51

publishing applications, 230–32
Publish Wizard, 231
Python, 236

Q
queries, keyword searches, 45
queries, LINQ

adding to database applications,
176–82

overview of, 164
queries, SQL. See SQL (Structured

Query Language)

Query Parameters dialog, 179
search criteria, 180–81
SQL code pane of, 178
visual view of queries with, 177

query expressions, LINQ, 183
Query Parameters dialog, Query

Builder, 179
questions, help options, 37

R
RadioButton control, Windows

Forms, 76
RAD (rapid application

development), 59–83
common controls, 75–78
error detection/handling in real-

time, 68–70
event-driven applications and,

78–82
IntelliSense. see IntelliSense

My namespace, 70–72

overview of, 59
rename feature, 72–75
snap lines, 60–61
summary of, 83
Visual Basic 2008 Express Edition

as RAD tool, 10
range, fixing out-of-range problems,

135–37
rapid application development.

See RAD (rapid application

development)

RDBMS (relational database
management system). See also

SQL Server 2005 Express Edition

defined, 142
installing Visual Basic 2008

Express and, 19
null values and, 145
SQL extensions, 149

Really Simple Syndication (RSS)
key features of Visual Basic 2008

Express, 13
MSDN feeds, 30

68–70
Recent Project pane, Start Page, 29
references

added to applications, 127–28
defined, 236

relational database management
system. See RDBMS (relational

database management system)

relational databases. See also

databases

interacting with, 148–49
normalization, 143
overview of, 142
querying, 149

relationships, between database
table, 155–59

rename feature, 72–75
REST Web services, 205
reusable components, types of

applications created with
Visual Basic 2008 Express, 10

Rich Site Summary. See RSS (Really

Simple Syndication)

rows
database tables, 142
primary keys and, 146

RSS (Really Simple Syndication)
key features of Visual Basic 2008

Express, 13
MSDN feeds, 30

runtime environment, managed vs.
unmanaged applications, 2

S
Save All (Ctrl+Shift+S), 38, 156
Save (Ctrl+S), 38
SaveFileDialog control, Windows

Forms, 79–80
saving application settings, Weather

Tracker, 228
Scan method, 175
SDK (software development kit),

Visual Studio, 150
search criteria, Query Builder, 180–81

Se
SE
se

SE

Sh
Sh

Sh

Sh

si
Si

Si

Si

Sm
Sm
sm

sn

SO
so

So

so

 Index
242

tsNavigation tool strip, 108–09
T-SQL (Transact-SQL)

documentation, 162
SQL extensions, 149
stored procedures and, 176

tutorials, Visual Basic 2008 Express,
11

typed datasets, 172

U
UI (user interface)

application creation and, 26
applications, 189–90
defined, 236
splash screens and, 86

unhandled exceptions, 133–34
unit labels, in Weather Tracker, 224
UpdateCurrentInfo method, 228

updates (program), installing Visual
Basic 2008 Express and, 22

updating application data, Weather
Tracker, 228

URLs, adding navigation capacity to
applications, 110

user input validation, 226–27
user interaction, dialog boxes for, 93
user interface. See UI (user interface)

user preference settings, 210–11
Using block, 133

V
validation, of user input, 226–27
variables

defined, 236
IntelliSense and, 62
naming conventions, 57

version information, in Assembly
Information dialog, 89

Visual Basic 2008
example of Person class, 5–6

as OOP, 4–9
overview of, 4

243
source code. See also code

closing application when
modifying, 55

learning to read, 39
wiring to events, 79–82

splash screens
attaching to applications, 201
creating, 86–88, 199–201
defined, 236
display time, 92–93
opening applications and, 86
sizing, 92

SQL Server 2005 Express Edition
as ADO.NET data source, 163–64
application diagrams, 150
creating CarTracker application,

151–53
creating relationships between

tables, 155–59
creating tables, 153–55
data entry, 159–62
defined, 236
installing Visual Basic 2008

Express and, 21
overview of, 19

SQL (Structured Query Language)
documentation, 162
querying relational databases,

148
stored procedures, 176–77

Start Debugging (F5), 39, 129–30
Starter Kits, built-in to Visual Basic

2008 Express, 11
Start Page, Visual Basic 2008

Express, 29–31
Start Without Debugging

command, 40
status bars

adding to applications, 101–02
main IDE components, 30–31

StatusStrip control, Windows Forms,
101–02

Step Into command (F8), 130–31
Step Out command (Ctrl+Shift+F8),

133–35

sticky tabs, in IntelliSense Filtering,
63

Stop Debugging command
(Ctrl+Alt+Break), 137–38

stopping applications, 196–99
stored procedures, SQL statements,

176–77
strings

defined, 236
formatting, 93

strongly typed datasets, LINQ and,
182–83

Structured English Query Language
(SEQUEL), 148–49

Structured Query Language.
See SQL (Structured Query

Language)

Sub method, 6

subroutines, 54
surrogate keys, 146
symbols, renaming, 72, 75
syntax

code snippets for, 66
IntelliSense for help in proper

coding, 62

T
tab key, for moving through

IntelliSense options, 65
TableAdapterManager class, 173
TableAdapter Query Configuration

Wizard, 176–77, 180
table adapters, 173
Table Designer, 153–55
TableLayoutPanel control, Windows

Forms, 87
tables

creating, 153–55
entering data, 159–62
foreign keys, 147–48
modifying table structure, 172
navigation controls for, 161
primary keys, 146–47
in relational databases, 142

relationships between, 155–59
tasks, background performance of,

215–18
templates

splash screens, 86
Windows Forms applications, 42

Test Connection button, verifying
connection status of a
database, 153

testing applications, 225, 229
TextBox control, Windows Forms

adding, 53
description of, 76
Multiline, MaxLength, SizeHeight,

SizeWidth properties, 174
Text property, 54, 192
.tif files

for images, 223–24
packaging and publishing

applications and, 230
titles, changing application title, 89
toolbars

defined, 236
main IDE components, 30

Toolbox
main IDE components, 30
pinning, 60

ToolStripContainer control, Windows
Forms, 99–100

adding to applications, 100
overview of, 99–100
rearranging order of controls, 101

ToolStrip control, Windows Forms
adding new controls to, 108–09
adding to applications, 106–07

tool strips. See ToolStrip control,

Windows Forms

ToolTip control, Windows Forms
description of, 78
tooltips defined, 236

tooltips. See ToolTip control,

Windows Forms

Track Changes feature, 64
Try-Catch blocks, code snippets

for, 66

 Index

ition: Build a Program Now!

Visual Basic 2008 Express Edition splash screen and About dialog, copyright information, 90 types of applications created with
Visual Basic 2008 Express, 10

indows Forms applications. See

also Windows applications

About dialog form, 199–201
adding controls to browser

application, 52
cartracker database. see

CarTracker

creating new project, 50, 190
notification form, 191–94
Option dialog box form, 202–03
overview of, 27
splash screens, 86, 199–201
steps in building, 42–45
WPF compared with, 113
indows Forms controls. See

controls

indows Forms Designer
building Windows Forms

applications, 42
key features of Visual Basic 2008

Express, 12
indows operating systems
installing Visual Basic 2008

Express on Vista, 18
.NET framework building blocks

shipping with Vista, 3
WPF and, 112
indows Presentation Foundation.

See WPF (Windows

Presentation Foundation)

indows services, as type of
Windows application, 27

indows Updates
installing new applications and,

22
installing Visual Basic 2008

Express and, 16
iring controls, to functionality, 54,

79–82
PF applications
creating Web browser, 114–17
244 Microsoft Visual Basic 2008 Express Ed

defined, 236
key features, 11–13
overview of, 9–10
types of applications created

with, 10
Visual Basic Express Headlines pane,

Start Page, 29
Visualizers, 128–29
Visual Studio 2008, 9–10

W
Watch tab, Debug menu, 130, 138
weather icons, adding to Weather

Tracker, 223–24
Weather Tracker, 187–233

background functioning, 211
ClickOnce deployment, 229
Create and Destroy Icon, adding

code to, 219–22
features and functions of, 188–89
main form, data source for,

190–91
main form, finishing, 222–23
MSN Weather data class added

to, 211–15
MSN Weather Web service,

connecting to, 206–07
notification area capability added

to, 191–94
notification capability associated

with context menu strip,
195–96

Options dialog box attached to
context menu, 204

Options dialog box created,
202–03

Options dialog box, working with,
226

overview of, 187
packaging and publishing, 230–32
saving settings/updating weather

data, 228

199–201
stopping, 196–99
summary of, 230–32
tasks performed in background,

215–19
testing, 225
testing options in, 229
unit labels and conversion utility

added to, 224
user interface, 189–90
user preference settings, 210–11
validation of user input, 226–27
weather icons added to, 223–24
weather information added to,

207–10
Web service application for,

204–05
Web applications, Visual Basic

2008 Express Edition not
development tool for, 10

Web browser, building, 47–58
Click action connected to button

control, 55–56
connecting controls to functions

they perform, 54
defining what a project is, 48–49
design layout, 49
experimenting with, 57
overview of, 47
steps in creating simple browser,

50–53
summary of, 58

WebBrowser control, Windows
Forms, 52

Web browser, modifying
About dialog box, 93–96
buttons added to, 106–07
controls, adding to tool strip,

108–09
controls, populating with

information, 102–04
controls, rearranging order of,

100–101

dialog boxes for user interaction,
93

form icon, 111
menu items added to WPF

version of, 117–22
menu strip style options, 101
My namespace and, 91–92

Navigate dialog box, 96–99
navigation button behavior,

107–08
opening application, 86
overview of, 85
personalizing with icons, 104–06
professional look and feel, 99
splash screen display time, 92–93
splash screen for, 86–88
status bars and progress bars,

101–02
steps in creating WPF version of,

114–17
summary of, 123
titles, 89
tool strip container control added

to, 99–100
tool strips added to, 106–07
URL navigation capacity, 110

Web pages, Navigate dialog for,
96–99

Web servers, 204
Web services

for adding weather information
to Weather Tracker, 207–10

connecting to, 206–07
overview of, 204–05

Welcome to Setup page, installing
Visual Basic 2008 Express and,
18

wildcard characters, in queries, 179
Windows applications, 41–45

defined, 236
event-driven nature of, 78–82
overview of, 27
steps in building, 42–45

W

W

W

W

W

W

W

w

W

245

Y
y coordinates, control alignment

and, 60

245
Index

menu items added to Web
browser, 117–22

overview of, 27
types of Visual Basic 2008 Express

applications, 25
WPF Designer

key features of Visual Basic 2008
Express, 12

Navigate window in, 120
WPF (Windows Presentation

Foundation)
defined, 236
function of, 3

overview of, 112
Silverlight and, 20
XAML and, 113

X
XAML (Extensible Application

Markup Language)
WPF and, 113
XAML Editor as key features of

Visual Basic 2008 Express, 12
x coordinates, control alignment

and, 60

XML
ADO.NET classes integrating with

XML classes, 163
application settings stored in

XML file, 210
SOAP Web services and, 205

XML schema definition file, 165
XMLTextReader, 212

XML Web services, 12
.xsd (XML schema document),

166–67

 Index

	Cover
	Copyright Page

	Contents
	Introduction
	Who Is This Book For?
	How This Book Is Organized
	Conventions and Features in This Book
	Code Samples
	Installing the Code Samples
	Using the Code Samples
	Uninstalling the Code Samples
	Prerelease Software
	Technology Updates
	Support for This Book
	Questions and Comments
	About the Author
	Dedication
	Thanks

	Chapter 1: Introducing Microsoft Visual Basic 2008 Express Edition
	What Is .NET?
	What Is Visual Basic 2008?
	Is Visual Basic 2008 an Object-Oriented Programming Language?
	What Is Visual Basic 2008 Express Edition?
	What Kinds of Applications Can You Build with Visual Basic 2008 Express Edition?
	What Are the Key Features You Need to Know About?

	Chapter 2: Installing Visual Basic 2008 Express Edition
	Preparing to Install Visual Basic 2008 Express Edition
	Side-by-Side Installation
	Prerelease Versions of Visual Basic 2008 Express Edition

	Installing Visual Basic 2008 Express Edition

	Chapter 3: Creating Your First Applications
	Three Types of Applications: What Are the Differences?
	Getting Started with the IDE
	Building the Projects
	Building a Console Application
	Getting to Know Solution Explorer
	Getting Help: Microsoft Visual Studio 2008 Express Edition Documentation
	Coding Your Console Application
	Customizing the IDE
	Creating a Windows Application

	Chapter 4: Creating Your Own Web Browser in Less Than Five Minutes
	What Is a Project?
	What Is the Design Layout?
	To Create a Simple Web Browser

	Putting It All Together

	Chapter 5: Using Rapid Application Development Tools with Visual Basic 2008
	Snapping and Aligning Controls Using Snap Lines
	Using IntelliSense—Your New Best Friend!
	Using IntelliSense as You Go
	Using IntelliSense Filtering: Removing the “Uncommon”
	Opening IntelliSense: Pressing Ctrl+Spacebar
	Opening IntelliSense: Typing a Period or Left Parenthesis
	Using IntelliSense Code Snippets: The Time-Saver
	Invoking IntelliSense Code Snippets

	Exploring Real-Time Error Detection and Correction
	Oh, My...My Is Great
	Renaming
	Why Should You Rename?
	How to Use the Rename Feature

	Exploring Common Windows Controls
	What Happens When an Event Is Triggered?

	Chapter 6: Modifying Your Web Browser
	Opening Your Application
	Interacting Through Dialog Boxes
	Adding an About Dialog Box
	Adding a Navigate Dialog Box

	Having a Professional Look and Feel at Your Fingertips
	Adding a Tool Strip Container and Some Tools
	Adding a Status Bar to Your Browser
	Personalizing Your Application with Windows Icons

	Redoing the Browser
	Windows Presentation Foundation
	WPF and XAML

	Chapter 7: Fixing the Broken Blocks
	Debugging an Application
	Using a DLL in an Application
	Using Breakpoints, Locals, Edit and Continue, and Visualizers

	Chapter 8: Managing the Data
	What Is a Database?
	What’s in a Database?
	What Are Data Normalization and Data Integrity?
	What Is Null?
	What Are Primary Keys and Foreign Keys?
	How Do You Interact with a Relational Database?

	Using SQL Server 2005 Express Edition in Visual Basic 2008 Express Edition
	Creating a Database Using Visual Basic 2008 Express Edition
	Creating Tables in Your Database
	Creating Relationships Between the Tables
	Entering Data in SQL Server Tables Using Visual Studio

	What Are ADO.NET, Data Binding, and LINQ?
	Developing the CarTracker Application
	Using the Component Tray
	How Do I Get More Meaningful Information on My Form?
	Using LINQ

	Chapter 9: Building Your Own Weather Tracker Application
	Exploring the Features of the Weather Tracker Application
	Creating the Application User Interface
	Adding Notification Area Capabilities
	Adding the Splash Screen and About Dialog Box
	Adding the Options Dialog Box

	Using the MSN Weather Web Service
	Connecting to MSN Weather Web Services
	Setting User and Application Preferences
	Working in the Background
	Completing the Core Weather Tracker Functionality
	Testing Weather Tracker
	Working with the Options Dialog Box
	Testing Weather Tracker Options

	And Now, Just ClickOnce

	Glossary
	Index

