Microsoft

Visual

EXpress Ec

Patrice Pelland

g
:

P L L S

ov dirah 9w

etuTa

iwrrantah -

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2008 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means without the written
permission of the publisher.

Library of Congress Control Number: 2008920560

Printed and bound in the United States of America.

123456789 QWT 321098

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information about international editions,
contact your local Microsoft Corporation office or contact Microsoft Press International directly at fax (425) 936-7329. Visit our Web site at
www.microsoft.com/mspress. Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, DirectX, Excel, Expression, Expression Blend, IntelliSense, Internet Explorer, Jscript, MSDN, MSN, Outlook,
Silverlight, SQL Server, Visual Basic, Visual C#, Visual C++, Visual Studio, Visual Web Developer, Win32, Windows, Windows Live,
Windows Mobile, Windows Server, Windows Vista, Xbox and Xbox 360 are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries. Other product and company names mentioned herein may be the trademarks of their
respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted herein are
fictitious. No association with any real company, organization, product, domain name, e-mail address, logo, person, place, or event is
intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any express, statutory, or
implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will be held liable for any damages caused or
alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Ben Ryan Editorial Production: Happenstance Type O Rama
Developmental Editor: Sandra Haynes Technical Reviewer: Richard Triance
Project Manager: John Pierce

Body Part No. X14-55519

Chapter 1 Getting Help: Microsoft Visual Studio 2008

Introducing Microsoft Visual Basic 2008 Express Edition Documentation 34
Express Edition 1 Coding .Yc')ur Console Application 37
What Is .NET? 2 E;J:;(’c)i:];;n\?v;(:j;v?: Application 22
What Is Visual Basic 2008? 4
Is Visual Basic' 2008 an Object-Oriented Chapter 4
Programming Language? 4 ap ?r .
What Is Visual Basic 2008 Express Edition? 9 Creatlng You.r Own Web Browser in Less
What Kinds of Applications Can You Build with Than Five Minutes 47
Visual Basic 2008 Express Edition? 10 What Is a Project? 48
What Are the Key Features You Need to Know What Is the Design Layout? 49
About? 11 To Create a Simple Web Browser 50
Putting It All Together 56
Chapter 2
Installing Visual Basic 2008 Express Edition 15 Chapter 5
Preparing to Install Visual Basic 2008 Express Edition 16 Using Rapid Application Development Tools
Side-by-Side Installation 16 with Visual Basic 2008 59
Prerelease Versions of Visual Basic 2008 Express Edition 17 Snapping and Aligning Controls Using Snap Lines 60
Installing Visual Basic 2008 Express Edition 17 Using IntelliSense—Your New Best Friend! 62
Using IntelliSense as You Go 62
Chapt.er 3) o Using IntelliSense Filtering: Removing the “Uncommon” 63
Creating Your First Applications 25 Opening IntelliSense: Pressing Ctrl+Spacebar 64
Three Types of Applications: What Are the Differences? 26 Opening IntelliSense: Typing a Period or Left Parenthesis 64
Getting Started with the IDE 28 Using IntelliSense Code Snippets: The Time-Saver 66
Building the Projects 31 Invoking IntelliSense Code Snippets 67
Building a Console Application 31 Exploring Real-Time Error Detection and Correction 68
Getting to Know Solution Explorer 32 Oh, My...My Is Great 70

do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

Contents www.microsoft.com/learning/booksurvey/ i

Renaming

Why Should You Rename?

How to Use the Rename Feature
Exploring Common Windows Controls
What Happens When an Event Is Triggered?

Chapter 6

Modifying Your Web Browser

Opening Your Application

Interacting Through Dialog Boxes
Adding an About Dialog Box
Adding a Navigate Dialog Box

Having a Professional Look and Feel
at Your Fingertips

Adding a Tool Strip Container and Some Tools
Adding a Status Bar to Your Browser

Personalizing Your Application with Windows Icons

Redoing the Browser
Windows Presentation Foundation
WPF and XAML

Chapter 7

Fixing the Broken Blocks

Debugging an Application
Using a DLL in an Application

Using Breakpoints, Locals, Edit and Continue, and
Visualizers

Chapter 8
Managing the Data
What Is a Database?
What's in a Database?
What Are Data Normalization and Data Integrity?
What Is Null?
What Are Primary Keys and Foreign Keys?
How Do You Interact with a Relational Database?

72
73
73
75
78

85

86
93
93
96

929

101
104
112
112
113

125

126
126

128

141

142
142
143
145
146
148

Using SQL Server 2005 Express Edition in
Visual Basic 2008 Express Edition

Creating a Database Using Visual Basic 2008
Express Edition

Creating Tables in Your Database
Creating Relationships Between the Tables

Entering Data in SQL Server Tables Using
Visual Studio

What Are ADO.NET, Data Binding, and LINQ?
Developing the CarTracker Application
Using the Component Tray

How Do | Get More Meaningful Information
on My Form?

Using LINQ

Chapter 9

Building Your Own Weather Tracker Application

Exploring the Features of the Weather Tracker
Application

Creating the Application User Interface
Adding Notification Area Capabilities
Adding the Splash Screen and About Dialog Box
Adding the Options Dialog Box

Using the MSN Weather Web Service
Connecting to MSN Weather Web Services
Setting User and Application Preferences
Working in the Background

Completing the Core Weather Tracker Functionality

Testing Weather Tracker
Working with the Options Dialog Box
Testing Weather Tracker Options

And Now, Just ClickOnce

Glossary
Index

150

151
153
155

159
163
165
172

173
182

187

188
189
191
199
202
204
206
210
211
219
225
226
229
229

235
237

If backgroundlipacs

" -

Im gy

Microsoft Visual Basic 2008 Express Edition (and the
other Visual Studio 2008 Express Edition products) is, in my
opinion, one of the best and most intelligent ideas to come
from the Developer Division at Microsoft. I'm applauding
and cheering for the people who had this brilliant idea
because | believe there is a real need and demand for a
world-class, powerful product for hobbyist programmers,
students, and professional developers. And Visual Basic
2008 Express Edition provides all of that and more.

Visual Basic 2008 Express Edition is a fully functional
subset of Visual Studio 2008, suitable for creating and
maintaining Windows applications and libraries. It's not
a timed-bomb edition, a demo, or a feature-limited
version—no, it's a key Microsoft initiative to reach more
people and give them the ability to have fun while creating
cool software.

Who Is This Book For?

This book is for everybody: students, hobbyist pro-
grammers, and people who always thought programming
was a tough task. It's for people who have ideas like “I wish
| could build a tool to store all my recipes and then print
them and send them to my friends,” “l wish | could build
this cool card game that | have never found elsewhere,” “|
wish | could build this cool software to store my DVD and
CD collection,” “I wish | could build this software to help me

Introduction

LY

work with matrices and plot graphics for my math class,”
and many more projects that you can imagine!

This book is for people who have ideas but don't know
how to bring them to reality. And it's a good introduction
to the art and science of developing software.

How This Book Is Organized

This book consists of nine chapters, each covering a
particular feature or technology about Visual Basic 2008
Express Edition. Most chapters build on previous chapters,
so you should plan on reading the material sequentially.

Conventions and Features in This Book

This book presents information using conventions
designed to make the information readable and easy to
follow. Before you start the book, read the following list,
which explains conventions you'll see throughout the book
and points out helpful features in the book that you might
want to use:

[Each exercise is a series of tasks. Each task is presented
as a series of numbered steps (step 1, 2, and so on).
Each exercise is preceded by a procedural heading that
lets you know what you will accomplish in the exercise.

[Boxes labeled TIP, NOTE, MORE INFO, and so on, pro-
vide additional information or alternative methods for
completing a step successfully.

[0 Boxes labeled CAUTION alert you to information you
need to verify before continuing.

[0 Text that you type appears in bold.

B Menu commands, dialog box titles, and other user
interface elements appear with each word capitalized,
such as in “click Save As."

[A plus sign (+) between two key names means that you
must press those keys at the same time. For example,
“Press Alt+Tab” means that you hold down the Alt key
while you press the Tab key.

[Code listings appear in a monospaced font in this book.

1 Sidebars throughout the book provide more in-depth
information about the content. The sidebars might con-
tain background information, design tips, or features
related to the information being discussed.

[Each chapter ends with an “In Summary..." section that
briefly reviews what you learned in the current chapter
and previews what the next chapter will present.

System Requirements
You'll need the following hardware and software to
complete the exercises in this book:

I Windows Vista, Microsoft Windows XP with Service
Pack 2, or Microsoft Windows Server 2003 with
Service Pack 2

[Visual Basic 2008 Express Edition

1 GHz 32-bit (x86) processor
1 GB MB RAM (512 MB minimum)
40 GB hard drive with at least 15 GB of available space

Support for Super VGA graphics (for support for
DirectX 9 graphics, see the recommended requirements
at www.microsoft.com/windows/products/windowsvista/
editions/systemrequirements.mspx)

1 CD-ROM or DVD-ROM drive
I Microsoft mouse or compatible pointing device

You'll also need administrator access to your computer
to configure SQL Server 2005 Express Edition.

The companion DVD contains the Visual Basic 2008 Express Edition soft-
ware needed to complete the exercises in this book. The DVD also includes
the other Visual Studio 2008 Express Editions—for Visual C#, Visual C++,

and Web development. You can install any of the Express Edition products
included on the DVD. See Chapter 2, “Installing Visual Basic 2008 Express
Edition,” for detailed installation instructions.

Code Samples

You can download the code samples for the examples
in this book from the book’s companion content page at
the following address: http.//www.microsoft.com/mspress/
companion/9780735625419/. You'll use the code samples
and starter solutions as you perform the exercises in the
book. By using the code samples, you won't waste time cre-
ating files that aren’t relevant to the exercise. The files and
step-by-step instructions also let you learn by doing, which
is an effective way to acquire and remember new skills.
You'll also find the complete solutions if you want to verify
your work or simply want to look at them.

Installing the Code Samples Using the Code Samples

Follow these steps to install the code samples on your Each chapter in this book explains when and how to use
computer. any code samples for that chapter. When it's time to use a
code sample, the book will list the instructions for how to
open the files. The chapters are built around scenarios that
simulate real programming projects so you can easily apply

Download the code samples from http://www.microsoft.
com/mspress/companion/9780735625419/.

After you download the code samples file, run the the skills you learn to your own work.
installer. For those of you who like to know all the details, a list
Follow the instructions that appear. of the code sample projects appears in the following table.

Almost all projects have solutions available for the practice
exercises. The solutions for each project are included in the
folder for each chapter and are labeled “Complete.”

The code samples are installed in the Documents\
Microsoft Press\VB 2008 Express folder on your

computer.
Project Description
Chapters 1 and 2 No sample projects.
Chapter 3

Application that takes two numbers, adds them together, and then displays the sum in a

MyFirstConsoleApplication .
console window.

MyFirstWindowsApplication Same application as MyFirstConsoleApplication, but this one displays the result in a
message box.

Chapter 4 Simple Web browser application that enables the user to browse on the Internet.

MyOwnBrowser

Chapter 5 Application that teaches you to use the most important features in Visual Basic 2008

TestProject Express Edition.

Chapter 6 This is the same application you developed in Chapter 4, enhanced with additional
features. You'll add menus, toolbars, status and progress bars, and a navigation win-

MyOwnBrowser

dow with autocomplete. You'll also build a simple browser using Windows Presentation
Foundation (WPF).

Description

Project

Chapter 7
Debugger
Chapter 8

CarTracker

Chapter 9

Weather Tracker

An application full of problems to help you learn how to debug an application by using
features of Visual Basic 2008 Express Edition.

An application enabling the user to track car ads from the Internet using a SQL Server
2005 Express database to store the information. You'll also be introduced to Language
Integrated Query (LINQ).

An application that runs in the system tray and has a nice user interface to display
weather data collected by your application from the MSN Weather service. You'll also

create a deployment package for the distribution of your application.

Uninstalling the Code Samples

Follow these steps to remove the code samples from
your computer.

ON WINDOWS VISTA

In Control Panel, click Programs.

Under Programs and Features, click Uninstall a Program.

In the list of programs, select Microsoft Visual Basic
2008 Express Edition: Build a Program Now!, and then
click Uninstall.

Follow the instructions on the screen to remove the
code samples.

ON WINDOWS XP

In Control Panel, open Add or Remove Programs.

From the Currently Installed Programs list, select Micro-
soft Visual Basic 2008 Express Edition: Build a Program
Now!, and click Remove.

Follow the instructions on the screen to remove the
code samples.

Prerelease Software

This book was reviewed and tested against the Novem-
ber 2007 release candidate for Visual Studio 2008. This book
is expected to be fully compatible with the final release of
Visual Studio 2008. If there are any changes or corrections
for this book, they'll be collected and added to a Microsoft
Knowledge Base article. See the “Support for This Book”
section later in this introduction for more information.

Technology Updates

As technologies related to this book are updated, links
to additional information will be added to the Microsoft

Press Technology Updates Web page (http.//www.micro-
soft.com/mspress/updates/). Visit this page periodically for
updates on Visual Studio 2008 and other technologies.

Support for This Book

Every effort has been made to ensure the accuracy
of this book and the companion content. As corrections
or changes are collected, they'll be added to a Microsoft
Knowledge Base article. To view the list of known correc-
tions for this book, visit http://support.microsoft.com/, and
in the Search box, enter the book title.

Microsoft Press provides support for books and com-
panion content at http.//www.microsoft.com/learning/
support/books/.

Questions and Comments

If you have comments, questions, or ideas regarding
the book or the companion content or have questions that
are not answered by visiting the sites listed earlier, please
send them to Microsoft Press via e-mail to mspinput@
microsoft.com.

Or you can send them via postal mail to the following
address:

Microsoft Press

Attn: Visual Basic 2008 Express Edition: Build a Program

Now! Editor

One Microsoft Way

Redmond, WA 98052-6399

Please note that Microsoft offers no software product
support through these addresses.

About the Author

Patrice Pelland is a development manager at Microsoft
working in the Online Services Group. He has a passion for
Web 2.0 technologies, Silverlight, WCF, and ASP.NET. For
the past four years, he has been working, teaching, evange-
lizing, and talking about these technologies to everyone.

For the past 14 years, he has been working in software
development in various roles: developer, project lead,
manager and mentor, and software engineer in QA orga-
nizations. He has vast experience spanning multiple tech-
nologies and fields, including Web development, developer
tools, fiber optics telecommunication, aviation, and coffee
and dairy companies. He also spent three years teaching
computer science and software development at a college in
Canada.

When not developing great tools for developers and
helping customers throughout the world, he enjoys spend-
ing time with his family and friends, playing games on Xbox
360 and his PC, reading books, reading about cars, playing
hockey, watching NHL hockey and NFL football, and having
great dinners with good food and fine drinks with friends
and family. He resides with his family in Sammamish, Wash-
ington.

Dedication

This book is dedicated to my family. My wife, Hélene,
is my strength; because of her love and her respect, | am a
better human being. She's beautiful—my idol, my inspira-
tion, my sunshine, my best friend, my love, and an awe-
some mother! Mon amour, thanks for being who you are

and for being there for me. | love you! Thanks to her for
letting me repeat this crazy adventure of writing a book.

Thanks

First of all, thanks to my parents. Mom and Dad,
you gave me all the chances to be what | am in life and you
gave me the values to be the man | am. Thanks, and |
love you!

A book is a huge adventure in somebody'’s life (imag-
ine two ©), and it would not be possible without the help
of many people. I've always read the “thank you"” sections
in other people’s books, and | was always amazed at how
many people are needed to make a book what it is. Now |
really understand why!

Although writing a book is tough—real tough—it’s
really satisfying at the same time. During the writing pro-
cess, you sometimes have doubts, and | had my share of
them, especially those nights at 3 a.m. when all other souls
in the house were asleep, even my dog; when | was in front
of my laptop with an exception and a white page in Micro-
soft Word. | can’t remember how many times | said to my
friends, “No, | won't be able to be there. | need to work on
my book.” But it's an awesome experience to write a book;
everybody who has the chance should take the challenge!

That said, | first need to thank my lovely family for
letting me do this to them again. My kids (Laura, 13,
and Antoine, 11) and my wife, Hélene, were so great and
patient. This time they said, "You're writing another book!
Oh, no...we'll see you after Thanksgiving.” But at the same
time, they were respecting the space | needed and the time
alone! You guys are great, and | love you!

| have to thank all the people at Microsoft Learning and
the publishing team. | would especially like to thank Ben
Ryan for offering me the chance to work with him again;
Sandra for her constant motivation, help, and suggestions
and also for helping me through all the hurdles of writing a
book; and all the folks on the publishing team for all their
help getting the job done and producing a real, tangible
product. You guys have my respect for working day in, day
out in the crazy world of publishing.

| would also like to thank all the people in the Visual
Basic, C#, Windows Forms, MSDN, and setup teams who
helped me by answering all my questions in a dynamic and
constantly changing product life cycle. | would like to thank
more specifically Dan Fernandez, Joe Binder, Brian Keller,
Brian Johnson, Hong Gao, Jay Roxe, Kavitha Radhakrishnan,
Kent Sharkey, Lisa Feigenbaum, Shamez Rajan, Steve Lasker,
Aaron Stebner, and Habib Heydarian.

Thanks also to my colleagues at MSN for always giv-
ing me good words of encouragement and to my friends
Pascal, Simon, Nicolas, John, and Patrice for reviewing the
samples and some chapters.

Thanks to my good friends here in the Puget Sound
area for the kind words of encouragement and to my fam-
ily and friends in Canada for understanding why I'm not
calling or giving any news. Sorry, Mom and Dad!

Thanks to everybody | might have forgotten!

Patrice Pelland
November 2007
Sammamish, WA

Introducing Microsoft

Visual Basic 2008
Express Edition

What Is .NET?, 2

What Is Visual Basic
2008?, 4

Is Visual Basic 2008
an Object-Oriented
Programming
Language?, 4

What Is Visual Basic 2008
Express Edition?, 9

Maybe you've decided to try programming and find yourself with this
book. If that's the case, you've come to the right place. This book is all about
introducing you to the art, science, and joys of creating software for Micro-
soft Windows—yes, the same Microsoft Windows you probably use every
day. Throughout the book, I'll show you how to build applications that are
similar to many of the applications you use on a regular basis, such as your
Internet browser, your word processor, your e-mail software, and your per-
sonal finance application. You're probably wondering how you could pos-
sibly do this with no programming experience. Don't worry. By the time you
finish this book, you'll be a believer. We'll have a blast, and because you'll
actually be building applications as you follow along with each exercise,
you'll see for yourself just how easy it can be.

What Is .NET?

Throughout this book, I'll use
the terms framework and .NET

Framework synonymously.

What is this .NET thing everybody is talking about? Maybe you've seen the term some-
where online or have come across it in the jobs section of your Sunday newspaper. A good
analogy is that NET—also called the .NET Framework—is to a software developer what tools
and manuals are to an auto mechanic.

Here is a formal definition of the .NET Framework:

The .NET Framework is a platform with which you can develop software applications
and libraries called managed applications; it provides you with the compiler and tools
you need to build, debug, and execute managed applications.

For our purposes, you could say that .NET is the platform that gives you everything you
need to develop and run managed applications that run on Windows.

We say that applications are managed because their execution is managed by the .NET
Framework. In fact, the .NET Framework manages the execution by providing a controlled
runtime environment that offers a wide variety of services, such as loading your applications,
managing memory, and monitoring and maintaining security and integrity while the applica-
tion runs. Before .NET (and Java), applications were unmanaged because they were not
executed by a controlled runtime environment. No other component of the operating
system provides the services .NET offers. The applications had to manage their own services,
which sometimes led to erroneous code, security holes, and data corruption. Because of
these problems, applications were tough to maintain and debug.

The .NET Framework provides you with a wide variety of tools, such as compilers, debug-
gers, programming languages, an execution engine (named the Common Language Runtime
[CLR]), developer tools, and a large number of predefined “building block” libraries. These
libraries are named Framework Class Libraries (FCLs). You can think of each .NET component
as a building block in a house and each version of .NET as an insulation layer in the walls of
a house. Figure 1-1 illustrates how many versions of .NET are on the market, as well as what
components have been added and in which version they belong.

Visual Studio 2008

CLR
WinForms
Web Services WCF
ASP.NET WE

WPF
CardSpace

What do the other abbreviations
and names in Figure 1-1 mean?
WF is the Windows Workflow
Foundation, another building
block that developers can use to
help automate business processes
through programs. CardSpace is
a technology related to manag-
ing online identities—something
like using a credit card. AJAX
(Asynchronous JavaScript

And XML) is used to develop
Web applications, and REST
(Representational State Transfer)
is a programming architecture
used for transferring data on
the Web.

LINQ

AJAX
REST

Figure 1-1
Additive versions of the .NET Framework

Some of these building blocks ship with the Windows Vista operating system. Two
popular ones are Windows Presentation Foundation (WPF) and Windows Communication
Foundation (WCF). WPF is a library that helps you build richer user interfaces and Windows
Vista-like applications for Windows. WCF, as its name implies, is a library that helps two
applications talk to each other using messages. To understand the relationship between
.NET 3.0 and .NET 3.5, remember that .NET 3.0 comes with Windows Vista and .NET 3.5
comes with Visual Studio 2008. Language Integrated Query (LINQ), which simplifies writing
code that manipulates data from various data sources (SQL Server databases, XML files, and
so on), is one of the features in .NET 3.5 that we'll cover in this book.

Chapter 1: Introducing Microsoft Visual Basic 2008 Express Edition 3

| won't put you to sleep with all the definitions for each building block. We're going to

It’s not necessary to have

Visual Studio to develop .NET use or talk about most of them in our projects in this book, and I'll introduce the blocks
applications, but using it offers

many advantages, aS eIt when appropriate. Just consider Figure 1-1 and return to it when you need to do so.

this book. Two notes about this figure are worth mentioning.

First, look at the blue component on top of the concentric circles. Microsoft Visual Studio

2008 is not part of the .NET Framework, but it touches the .NET Framework at all levels. With
The CLR hasn’t changed in Visual Studio 2008, you can develop applications that take advantage of all the components
Windows Vista and Visual
Studio 2008; the CLR that is run- of the .NET Framework.
ning on all operating systems is Second, notice that the CLR, among other components, is at the center of the circles. The
.NET 2.0., .

CLR is a crucial part of the foundation because it's the engine that loads and manages the

execution of source code.

What Is Visual Basic 2008? ' '

Visual Basic 2008 is one of the programming languages that target the .NET Framework.
Like any spoken or written language, Visual Basic has syntax rules and a series of valid words
you can use to create your applications. Visual Basic is a popular choice for beginners because
some people find the syntax simpler than the syntax of many other programming languages.
If you have used an older version of Visual Basic (such as Visual Basic 4.0, 5.0, or 6.0), you'll
find some familiar constructs and a familiar user interface (Ul) in Visual Basic 2008.

Is Visual Basic 2008 an Object-Oriented ' '
Programming Language?

Visual Basic 2008 is a fully fledged object-oriented programming language. Let's talk
about what this means.

Object-oriented programming (OOP) is a programming style (or programming para-
digm). There are other programming paradigms, such as functional or procedural program-
ming. Languages such as C, Fortran, Pascal, and previous versions of Visual Basic all use
functional or procedural programming paradigms. These paradigms focus more on the
actions, while OOP focuses more on the data itself.

Applications that use the OOP paradigm are developed using OOP languages (OOPLs).
The first OOPLs were introduced in the late 1960s, but they really became popular in the late
1970s. They are widely used today because most people agree that they're easy to learn, use,
debug, and maintain. For instance, OOPLs easily represent real-world objects. Visual Basic
2008 is an OOPL as are C#, C++, Java, Smalltalk, Lisp, and others.

Programmers use OOP to write programs that represent the decomposition of real-
world problems into modules. Those modules represent real-world objects and are known as
classes or types. You can think of an OOP program as a collection of objects interacting with
each other. Using OOP, a programmer defines new types to represent real-world objects,
such as a plane, a person, a customer, a dog, or a car. Those types or classes have what are
known as constructors, which developers use to create objects or instances. An object in a
program is a unit that represents one instance of a real-world object. It's a self-contained
unit because it includes all the data and functionality associated with that object. This means
each object created in an application contains all the information that characterizes it (data
members or fields) and all the actions (methods) that can access or modify that information.

Here is a simple example in Visual Basic 2008 that defines a Person class:

1 Public Class Person

2 ‘Data members

3 Private Name As String

4 Private Address As String
5 Private City As String

6 Private State As String

7 Private ZIP As String

8 Private Country As String

9

10 ‘Methods

11 Overridable Sub Display()

12 Console.WriteLine(Name)
13 Console.WriteLine(Address)

14 Console.WriteLine(City)

15 Console.WriteLine(State)

16 Console.WriteLine(ZIP)

17 Console.WriteLine(Country)
18 End Sub

19 End Class

In the example of the P
class, you would need
ment properties to a
modify the Private f
outside the class. T!

This class includes private data members and a Display method to print the object’s
content to the console. The Sub method is by default public. The Overridable keyword means
that a new class derived from this class will be able to write its own implementation of the
Display method.

Let's use a different example to go over these concepts some more. My dog, Chopin,
is an instance of the class Dog, and the class Dog is a subclass of the Animal class. Because
Chopin is a dog, he has some behaviors and data that are proper for a dog. But because a
dog is also an animal, Chopin also inherits some data and behaviors from the Animal class.

This means that the instance Chopin of the class Dog has data members that character-
ize him and methods that | can call on that little furry ball. For example, here is the instance
information for the Chopin object:

Data

I Breed He'sa Maltese.

I Gender He's male.

I Weight His weight is 5.5 pounds (2.5 kilograms).
I Color He's white.

I Name His name is Chopin Chabispel.

I Age He's three years old.

Actions
I He speaks (barks).

[He eats.
[He moves.
[|

He sleeps.

6 Microsoft Visual Basic 2008 Express Edition: Build a Program Now!

All these data items (breed, gender, weight, color, name, and age) and actions (speak,
eat, move, and sleep) characterize him, but they can also characterize any other dog, such as
my neighbor’s dog, Molly. And if you think about it, those items can characterize any animal.
This means that the class Dog inherits data members and methods from the class Animal.

Let's say you want to develop an application for a veterinary clinic. To cover the cats
who come to your clinic, all you must do is create a Cat class that also inherits from the class
Animal. Then each class (Cat and Dog) could override functionality in the Animal class as
needed. For instance, for the Cat class the Speak method would be meows instead of barks.
This means that those Speak methods for Cat and Dog are specializations of the regular
animal Speak method.

Let's look at the Person class example again. This time, I'll also show an Employee class
that derives from the Person class. The Employee class derives from the Person class by using
the keyword Inherits followed by the Person element. The keyword Overrides changes the
implementation of the Display method.

20 Public Class Employee

21 Inherits Person

22

23 Public Level As Integer
24 Public Salary As Integer

25

26 Overrides Sub Display()

27 Console.WriteLine(Name + “ is at level “ + Level.ToString() +
“and has a salary of : “ + Salary.ToString() + “$”)

28 Console.WriteLine(“His address is:”)

29 Console.WriteLine(Address)

30 Console.WriteLine(City + “,” + State + ““ + ZIP)

31 Console.WriteLine(Country)

32 End Sub

33 End Class

In this case, the Employee class inherits from the Person class and therefore gets all the
data fields from that base class. The Employee class doesn't have to redefine any of the fields
in its definition because it gets them automatically from Person. So, for the Employee class,
you must specify only what is different from an instance of the Person class. For example, an
instance of the Employee class would have Level and Salary, whereas none of the instances

of the Person class would. The Display method for Employee could thus add level and salary
information to the displayed message when it is called.

This was just a brief introduction to OOP and some of its concepts. Visual Basic 2008
supports all of these concepts and many more. Throughout this book you'll see more OOP

concepts, and when you do, I'll highlight them in a “reader aid” information box, as shown in

derive from the Object class, even the left margin‘
when it is not specified.

In .NET, all classes ultimately

Here's the complete listing used in this section with the addition of the Customer class:

34 Imports System

35
36 Public Class Person
37 ‘Data members

38 Public Name As String

39 Public Address As String
40 Public City As String

41 Public State As String

42 Public ZIP As String

43 Public Country As String
44

45 ‘ Methods

46 Overridable Sub Display()

47 Console.WriteLine(Name)
48 Console.WriteLine(Address)
49 Console.WriteLine(City)

50 Console.WriteLine(State)

51 Console.WriteLine(ZIP)

52 Console.WriteLine(Country)
53 End Sub

54 End Class

55

56 Public Class Customer

57 Inherits Person

58

59 Public ID As Integer

60 Public IsPartner As Boolean

61

62 Overrides Sub Display()

63 Dim partnerMessage As String
64

65 If IsPartner Then

66 partnerMessage = “ is a partner”

67 Else

68 partnerMessage = “ is not a partner”

69 End If

70

71 Console.WriteLine(“Customer ID: “ + ID.ToString())
72 Console.WriteLine(Name + partnerMessage)

73 Console.WriteLine(Address)

74 Console.WriteLine(City + “,” + State + “ “ + ZIP)
75 Console.WriteLine(Country)

76 End Sub

77 End Class

78

79 Public Class Employee

80 Inherits Person

81

82 Public Level As Integer

83 Public Salary As Integer

84

85 Overrides Sub Display()

86 Console.WriteLine(Name + “is at level “ + Level.ToString() + “ and
has a salary of : “ + Salary.ToString() + “$”)

87 Console.WriteLine(“His address is:”)

88 Console.WriteLine(Address)

89 Console.WriteLine(City + “,” + State + ““ + ZIP)

90 Console.WriteLine(Country)

91 End Sub

92 End Class

This is a simple case, but it illustrates some of the basic concepts of OOP.

What Is Visual Basic 2008 Express Edition?

Visual Basic 2008 Express Edition is the tool we will use throughout this book to develop

applications that run on Windows. The Express editions of Visual Studio 2008 were designed

We will look into the details
of what types of applications

fall into these categories in
Chapter 3, “Creating Your First
Applications.”

to focus on productivity. As with the high-end versions of Visual Studio 2008, the Express
editions are also what we call rapid application development (RAD) tools because their phi-
losophy is geared toward productivity. The Express editions of Visual Studio are easy to use,
easy to learn, and streamlined because although they contain mostly the same components,
they lack the full breadth of features found in the higher-end versions of Visual Studio. Most
features and components in the Express editions were simplified to make the learning curve
less steep and to fit the needs of the nonprofessional developer.

The Visual Studio 2008 Express editions were designed with beginner programmers in
mind—people like you who are curious about programming and who are looking for an
easy way to build Windows applications while learning how to program. Visual Basic 2008
Express Edition is the ideal tool to use to rapidly develop applications for topics you really
love or for hobbies you enjoy. You can also use it to help ease your day-to-day job or school
tasks. Most important, you can have fun with the tool while you're learning to program.

What Kinds of Applications Can You Build with
Visual Basic 2008 Express Edition?

With this version of Visual Studio 2008, you'll be able to create the following types of
applications:

Windows applications These are applications that have a graphical interface with
buttons, windows, menus, toolbars, and so on, as in Microsoft Word or Windows Internet
Explorer. With this book you'll be able to take full advantage of WPF, which lets you build
applications that create a rich user experience while exploiting all the power of your com-
puter. You can also build applications that look like Windows Vista—based applications.

Console applications These are applications that have no graphical interface and that
simply use text to communicate with the user. (Typically, these applications run in a com-
mand window or DOS window.)

Reusable components or class libraries These are groups of tools created to help
build other applications.

What you won't be able to build are Web sites and Web services. To create any type of
Web application, you will need to get Microsoft Visual Web Developer 2008 Express Edition.

What Are the Key Features You Need to Know About?

The following list, although not complete, provides the essential features of Visual Basic
2008 Express Edition. At this point, don't worry if you don’t understand every feature listed.
I'm presenting the features in the list because you'll come across all of them in some way in
the fun sample applications you will be creating as you read this book.

Most of the features listed here emphasize the RAD philosophy. Although the idea is to
give you an overview of the interesting features that can make your life easier, the names
of the features alone are not sufficient to understand what they mean. I've included a brief
description giving you the essentials and explaining how they will help you develop applica-
tions.

Built-in Starter Kits The Starter Kits are fully developed applications with best practices

and examples to follow. These applications will give you another example on which to

base your learning. They will be a good complement to what we are doing in this book.

You can find them at http.//msdn2.microsoft.com/en-us/vbasic/ms789080.aspx.

Beginner's targeted documentation and tutorials These are a fast and easy way to
get information. They also provide samples.

IntelliSense This feature provides real-time syntax suggestions and even finishes your
typing for you. In Visual Studio 2008, IntelliSense, as you will see, is everywhere (it's now
called IntelliSense Everywhere), and it provides a more complete and contextual set of
suggestions.

Code snippets Snippets provide code for more than 200 programming tasks to help
you complete many common tasks automatically. In addition, code snippets show the
recommended way of performing a task. They are directly integrated into the develop-
ment environment, and they are extensible; that is, anybody can extend the existing snip-
pets or provide new ones. Over time Microsoft will continue to supply new code snippets,
and members of online communities will contribute their snippets as well. Code snippet
extensibility seems to be a really nice feature that will help people share useful features in
online communities.

My construct This new Visual Basic feature provides simple access to popular .NET
Framework classes and common tasks. With it you can perform tasks without knowing

XAM
for
bey

all the framework internals. These tasks are nicely wrapped and provide you with an easy
and clean way of getting things done. Although similar to code snippets, the My con-
struct elements have their source code hidden and wrapped in one line of code.

Data-enabled applications With these applications you can connect to Microsoft SQL
Server 2005 Express Edition and add databases and code to access the data in your appli-
cations. In addition, a new editor has been added to help you develop applications that
use data. As mentioned earlier, LINQ is one of the big new features of .NET 3.5 included
with Visual Studio 2008, and you'll see how to use it in Chapter 8, “Managing the Data.”

Windows Forms Designer and WPF Designer With these new tools, you can easily
design your Windows application using either Windows Forms or WPF, including features
such as snap lines, which make sure your controls are aligned in your form, and autocor-
rect, which gives you real-time compiler feedback. You won't have to compile your code
to know whether you have errors; Visual Basic 2008 will show them to you as you type
and even give you potential fixes.

XAML Editor The XAML Editor lets you edit Extensible Application Markup Language
(XAML), which was introduced with .NET 3.0. This new markup language is used exten-
sively in WPF and Windows Workflow (WF) to describe user interface elements in WPF

and process logic in WF. (WF is beyond the scope of this book.)

XML Web services Visual Basic 2008 provides easy-to-use tools and wizards that will
help you connect to published XML-based Web services and will help you utilize their
functionality.

New Windows Forms controls These comprise an impressive list of controls—a
greater selection than in any previous version of Visual Basic. They will help you create
user interfaces that have a professional look and feel.

Smart Tags Most Windows Forms controls that come with the product include Smart
Tags. As in many applications of the 2007 Microsoft Office system, a Smart Tag is rep-
resented by a little black triangle, or an icon and a little black triangle, attached to a
control. A Smart Tag gives you access to the most common actions you can perform
on a control.

ClickOnce deployment With this feature you can easily publish your applications on
the Internet, on a local area network (LAN), on a network share, or on a CD. It also simpli-
fies publishing updates. In this new edition of Visual Studio, you can now use a wizard to
handle the Windows Vista User Account Control (UAC) so that your application runs in
the lowest user security context it needs. Usually you want to aim your software develop-
ment on Windows Vista at regular users. This has the effect of reassuring users that your
application won't perform unsafe operations without their knowledge.

Edit and Continue While you are debugging your application, the Edit and Continue
feature lets you modify the code, move back and forth in the debugger, re-execute code,
add functionality, or fix bugs on the fly without stopping program execution.

Debugger visualizers While you are debugging your application, the visualizers give
you an easy way to get readable representations of your application data. They give you
a human-readable representation of the stored data, even for more complex types found
in ADO.NET or XML.

Community Access and Start pages With these features, you can access additional
information from online communities and from different sources of online help, including
diverse RSS feeds. (RSS can stand for Rich Site Summary or Really Simple Syndication and
is a family of XML file formats; it is widely used by the weblog community and news

Web sites.)

Simplified development environment Everything in the development environment
was created so that you can easily access key functionality, tools, and objects.

As you can see, Visual Basic 2008 Express Edition includes many nice features to help

new programmers develop applications in a fast and fun way. These features will provide
guidance even when you're not necessarily sure what syntax or components to use and will
greatly expedite learning the product.

You now know that .NET is a framework composed of compilers, tools, languages,
debuggers, and an execution engine. The CLR is that execution engine, and it is responsible
for loading and executing managed applications. In essence, .NET is like a house with the
CLR as the foundation and all other services built on top of it. You also learned that the CLR
didn’t change with Windows Vista and Visual Studio 2008, but a lot of new building blocks
have been added so you can take advantage of features provided by Windows Vista and
make developing applications easier.

In addition, you learned that Visual Basic 2008 is an object-oriented programming
language that has a simpler syntax than most modern programming languages. You also
started to learn what object-oriented programming is and the basics of OOP in Visual Basic
2008.

This chapter gave you the opportunity to hear about the most important features of
Visual Basic 2008 Express Edition. In the next chapter, you'll learn how to install Visual
Basic 2008 Express Edition.

Microsoft Visual Basic 2008 Express Edition: Build a Program Now!

Installing Visual Basic
2008 Express Edition

Preparing to Install In this chapter, you'll install Microsoft Visual Basic 2008 Express Edition

Visual Basic 2008 Express and start getting to know what components are included with it. I'll guide

Edition, 16 you through all the steps of this installation so that you will be ready to start

Installing Visual Basic buildin.g. appligations using Visual Basic 200§ Expresis Edition r‘ight e?way.

2008 Express Edition, 17 In addition, | will talk about some common installation scenarios, give you
some tips for installing the product, and cover what to do if the unexpected
happens.

The installation process is easy and straightforward, following in the spirit
of the Microsoft Visual Studio Express editions.

Preparing to Install Visual Basic 2008 Express Edition ’ ’ ’

You have a couple of options for installing Visual Basic 2008, particularly if you've had
previous versions installed or if you installed an early (prerelease) version of the product.
Before you start the installation, make sure your computer meets the software and hard-
ware recommendations. Review the introduction of this book for all the necessary informa-
tion. You will also want to be sure that your computer has the latest updates from Windows
Updates (http.//windowsupdate.microsoft.com) and Microsoft Updates (http.//update.
microsoft.com). Installing the latest updates will ensure that your computer has all the lat-
est security updates along with some installation prerequisites before starting the product
installation.

If you have an antivirus or antispyware application installed and running, it might prompt
you to choose to allow certain setup tasks to proceed. For instance, with the latest Microsoft
Windows Defender (http.//www.microsoft.com/athome/security/spyware/software/default.
mspx), | was asked two times to allow certain tasks to proceed, and a few other times the
antispyware product recognized the source and simply mentioned it and continued. If you are
using a different antispyware application, your experience might vary slightly, but it will bear
some similarities to this process. These antivirus and antispyware products are giving you an
opportunity to confirm the origin of the product you're about to install. When you're sure it's
from Microsoft, let the setup application continue its job by choosing to allow the action.

During the installation, if something goes wrong, you're probably not the only person
to encounter the problem. Your first step is to look at the latest Readme information main-
tained by the setup team on MSDN and follow the steps provided to solve the installation
problem. Here is the link: http;//www.microsoft.com/express/support/.

Side-by-Side Installation

If you have a previous version of Visual Studio on your computer, say Visual Studio 2002

Please make sure you carefully or Visual Studio 2003, installing Visual Basic 2008 Express Edition (or any Visual Studio 2008
read the article at http://msdn2.

microsoft.com/en-us/vs2008/ product) will be straightforward. This is considered a side-by-side execution, and you can go

bb964521.aspx beiSIEEENN. straight to the “Installing Visual Basic 2008 Express Edition” section about installing the
the uninstall process! ft
software.

Prerelease Versions of Visual Basic 2008 Express Edition

When you uninstall a prerelease version of any software, you might encounter problems.
At some point, you might have no choice but to reformat your hard disk and reinstall your
operating system. This situation is not uncommon when you work with prerelease software,
but there is a solution. Before beginning the uninstall procedure, and as a precautionary
measure, be sure to back up all your data. If possible, a good practice is to avoid installing
any prerelease versions of any products on your main computer. Using a test machine (or
virtual software) will help you avoid losing any important data and won’t slow your produc-
tivity in the event something goes wrong. You can learn more about the virtual solution that
Microsoft offers, called Microsoft Virtual PC 2007, at http.//www.microsoft.com/windows/
virtualpc/default.mspx.

Luckily with Visual Studio 2008, all Community Technology Preview (CTP) and pre—Beta 2
versions were “time-bombed” virtual images provided by Microsoft; therefore, the chance of
ruining your main computer has been almost eliminated. You simply have to delete the
Virtual PC image provided by Microsoft, and you should be good to go with the released
version of the product. But if you have installed Visual Basic 2008 Express Edition Beta 2 and
you didn't use a Virtual PC image, you will have to uninstall the beta version before you
proceed with installing the released version.

Installing Visual Basic 2008 Express Edition

Now that we've addressed a lot of potential issues and your computer is ready, you can
proceed with the installation. You will find a companion DVD with this book that contains a
full working edition of the product. Simply insert it into any available CD/DVD drive in your
system, and follow the steps listed next.

Because of a new feature
multitargeting, you can co
any project to .NET 2.0, .
3.0, or .NET 3.5. After s
fully installing Visual B
Express Edition, you
uninstall Visual Basic
Edition because wit
2008 Express Editic
get .NET 2.0 and a
efits and new fea
Basic 2008 Expr:

Even though Microsoft doesn’t
officially support prerelease ver-
sions of the software, you will
find resources on Microsoft’s
Web site to help you with instal-
lation. In particular, you will find
information on how to uninstall
(and in what order to uninstall)
the products. Look at the forums
at the following address for help
on uninstalling any Beta 2 instal-
lations (you’ll need to sign in
using a Windows Live ID to get
to this article): http://forums.
microsoft.com/msdn/showforum.
aspx?forumid=1346&siteid=1.

Chapter 2: Installing Visual Basic 2008 Express Edition

17

If you install Visual Basic 2008
Express Edition on the Windows
Vista operating system, you
should be prompted by the
Windows Vista User Access
Control dialog box to give the

setup process permission to
continue. If you have been using
Windows Vista for a while, you
have probably seen this dialog
box many times. Click Continue
to proceed with the installation.

You'll have nothing to do but wait
at this point. The wait should not
be long—Iless than a minute in
most cases, depending on your
computer’s speed.

bottom of the License
page that enables Vis
to receive and displa
useful information, s
blogs, and samples

you can always se
after the produc
using the Tool

TO INSTALL VISUAL BASIC 2008 EXPRESS EDITION

If autorun is enabled, the installation process should start automatically. If it doesn’t start
automatically after a few seconds, follow these steps:
1. Click the Start button, and then click Computer.
2. Right-click the CD/DVD drive that has the product media, and select Explore.
3. In the list of files, locate and double-click Setup.hta to start the Installation Wizard.
4

On the Welcome to Visual Studio 2008 Express Editions Setup page, click Microsoft Visual
Basic 2008 Express Edition.

Within a few seconds, you should see that [Wiicrosoft Visual Basic 2008 Express Edition —
the setup program is copying all the neces- Setup is copying requited resources to your temp dirsctory
sary installation files to a temporary folder, as e
shown in Figure 2-1.

When the setup program is done copying rigure 2.1
the files, the setup application loads into Copying setup files locally to a temporary folder
memory. While the application is loading,
you'll see an initialization progress bar, as shown
in Figure 2-2.

Next, you'll be greeted by the Welcome to Setup page

Flease wait...

(Figure 2-3), which provides some information about the e
product and the possibilities you'll have working with it. @ e
You can select the check box if you want to send anony- —

mous data about your experience installing the product to -

Microsoft. This program is totally anonymous, and you can };’?U‘gﬁngihe setup process
read the policy to see exactly what type of information will

be sent. Click Next to continue or Cancel to exit the installation program.

To continue the installation process, you must read and accept the license terms
(Figure 2-4). Please read the terms carefully to see what you can and can't do with this
product. When you have finished and you're ready to accept the license agreement, select
the option button that says you have read and accepted the license, and then click Next to
continue.

18

Microsoft Visual Basic 2008 Express Edition: Build a Program Now!

TL?‘.E- e H—-—'_"""’"“ﬁ-_-- Wﬁﬁ st Editon Bet,

B =S =]

Microsoft *
Visual Basic

e Ediﬁgn_

‘Welcome to the Microsoft Visual Basic 2008 Express Edition installation wizard, Microsoft Yisual
Basic 2008 Express is a fun, simple and easy-to-learn development tool For Yisual Basic
programmers interested in creating Windows Forms, Windows Presentation Foundation (WPF) as
well as class libraries and console-based applications. This wizard will guide you through the
installation process, If this product requires any prerequisites that are not currently installed on
this computer, vou will be able to install those prerequisites as well,

Help Improve Setup
fou can submit anonymous information about your setup experiences to
Microsoft, To participate, check the box belaw,

[*es, send information about my setup experiences ko Microsoft Corporation,

‘y For more information, click Data Collection Palicy

T Whcrosoft Visual Basic 2008 Express Editon Setup

Be sure to carefully read and understand all the rights and restrictions described in the license
terms. You must accept the license terms before you can install the software,

MICROSOFT SOFTWARE LICEMSE TERMS -

MICROSOFT YISUAL BASIC 2008 EXPRESS EDITION |—|
These license terms are an agreement between Microsoft Corporation {or based on where

wou live, one of its affiiates) and you, Please read them, They apply to the software named
above, which includes the media on which you received it, if any, The terms also apply to
e M A

Press the Page Down key to see more text,

(7 T have read and accept the license terms

(71 I do not accept the license terms

Allove Yisual Studio to receive and display online RS5 content,

< Previous l Mexk = ” Cancel]

Figure 2-3
Welcome to Setup page

Figure 2-4
License terms

The Installation Options page appears, as shown in Figure 2-5. On this page, be sure to
specify that you want access to the Help system (MSDN Express Library) and Microsoft SQL
Server 2005 Express Edition.

SQL Server 2005 Express Edition is a relational database management system (RDBMS)
with which you can easily manipulate data in your application. This is an important step. For
example, if you're creating the DVD collection management application that is included as
one of the Starter Kits, all the data related to your DVD collection will need to be stored in a
database using SQL Server 2005 Express Edition.

The only reason not to install the
local MSDN Help or SQL Server
2005 Express Edition is limited
hard disk space. Be sure you
understand the consequences

of your selections. If you don’t
install MSDN Express Library,
you'll need access to the Internet
to get help from MSDN Online. If
you don't install SQL Server 2005
Express Edition, you won’t be able
to create applications that need
to access other sources of data,
such as Microsoft Access database
information, XML files, or other
types of RDBMS information. In
addition, some sample files from
this book won’t work automati-
cally, and you’ll have to perform
some manipulations or re-instal-
lations to get them to work.

Chapter 2: Installing Visual Basic 2008 Express Edition

19

Silverlight, previously named
WPF Everywhere (WPF/E), is a
cross-browser, cross-platform
plug-in for delivering the next
generation of .NET-based media
experiences and rich interactive

Select the optional produckis) you would like to install:

applications for the Web. From [¥]MSDN Express Library for ¥isual Studio 2008
a user point of view, Silverlight The MSDMN Express Library contains a subset of all Visual Studio product documentation, IF
A wou do not install the MSDM Express Library, you can still access the product documentation
behaves like Adobe Flash, but 5n MSDN Online.
Sllverllght is richer in terms [¥] Microsoft SQL Server 2005 Express Edition (x86)
of what you can do and, more SOL Server Express integrates with Visual Studio to provide basic client-database and
specifically, how you can do it. server-database capabilities,
With Silverlight 2.0, for example, [|Microsoft Silverlight Runtime
you will be able to use your Microsaft Silverlight is a small browser plug-in that: enables rich 'Web experiences, By
Vi | Basic skill d q installing Silverlight wou accept the Silverlight license agreement. Silverlight updates
isual Basic skills and expertise automatically, learn more,

to develop Silverlight applica-
tions. You can find nice sample:
documentation, and much mor:
about Silverlight at http://ww

silverlight.net. :
‘-!J For more information, see the Readme file,

< Previous][Mext =][Cancel

If you choose to install the soft-
ware in a folder other than the Figure 2-5

recommended default, you might Setting your installation options

have problems working with

some of the paths and files men-

tioned later n thele The last product to install is Silverlight. Although we won't use Silverlight directly in this
do install in a different location, . . K .

rest assured I'll give you some book, | strongly recommend you install it because you will have a smoother and richer

cautionary notesiniEEE . experience on many Web sites. Silverlight 1.0 will not take up a lot of disk space, because it is
might run into problems.

only a few megabytes.
When you're done with your selections, click Next to continue.

The installation time will vary on The Destination Folder page appears, as shown in Figure 2-6. This page will ask you
the basis of your choices on the h . Il th f d he default | .
previous page. On average, if you where to install the software on your computer. | recommend you use the default location.
selected both MSDN Library and Click Install to start the installation. The installation progress bar appears, which means

SQL Server 2005 Express Edition,
P TR ST the installation is underway! (See Figure 2-7.) This might be a good time to get something to

10 to 30 minustes dCRERE. drink because the installation could take some time.
your computer’s speed.

20 Microsoft Visual Basic 2008 Express Edition: Build a Program Now!

E. Microsoft Visual Basic 2008 Express Edition Setup

ress Edmon

Select the location where you would like to install Microsoft Visual Basic 2008 Express Edition, The Following itemis) are being installed on this computer:
p= -
el el E Runtime Pre-requisites

c:'l,Progra-m Files\Microsoft Yisual Studio 9.0'!,. - - 1 Microsoft .NET Framework v3.5

Il Microsoft Windows SDK for ¥isual Studio 2008 Express Tools for |
.MET Framework (x86)

Il Microsoft Windows SDK for Yisual Studio 2008 Express Tools for

+ Runtime Pre-requisites - Win32 (x86)

+ Microsoft \MET Framework +3.5 Il Microsoft ¥isual Basic 2008 Express Edition -

+ Microsoft Windows 2Dk for Visual Studio 2008 Express Tools for JWET
Framewark (x86) |5 Currently Installing (1 of 10): Runtime Pre-requisites

+ Microsoft Windows SDK for Wisual Studio 2008 Express Toaols for Win3z2 |
(xB6)

+ Microsoft Visual Basic 2008 Express Edition

The Following products will be installed:

Disk space requirements: C: 2.6 GB

< Previous H Install =][Cancel]

Figure 2-6 Figure 2-7
Destination Folder page Installation Progress page

Here is the list of components that will be installed:

[The .NET Framework 3.5 This was the outer circle of the image illustrated in
Figure 1-1.

[Visual Basic 2008 Express Edition This is the tool itself.

[l Microsoft SQL Server Compact 3.5 This is a version of SQL Server that lets you, as
the developer, embed a compact database on smaller devices, such as Windows Mobile-
based phones or even on your Windows-based desktop or laptop.

[MSDN Express Library for Visual Studio 2008 This was described earlier.
[l SQL Server 2005 Express Edition This was described earlier.
When the Setup Complete page appears (see Figure 2-8), you are now finished with the

installation. That wasn't too painful, was it? Before you click the Exit button, please read the
following notes.

Chapter 2: Installing Visual Basic 2008 Express Edition

Whenever you install a new application, it's always a good habit to go to Microsoft
Update (http.//update.microsoft.com) or Windows Update (http://windowsupdate.microsoft.
com) to get all the high-priority updates. Or you can click the Microsoft Update hyperlink
from the setup application, as shown in Figure 2-8. | prefer Microsoft Update because you get
In the future, more products will all the updates you need for all the Microsoft software already installed on your hard disk.
be added to the lisECHEI . You'll get updates for Windows, the Microsoft Office system, SQL Server, Windows Defender,

supported by Microsoft Update.

2 Microsoft Visual Basic 2008 Express Edition Setup [= 'ﬁ'|§|

" Micrpeof . .

- Visual Basuczm
T Ediﬁon“.

Microsoft Yisual Basic 2008 Express Edition has been installed
successfully.

‘:l‘) Wisit Microsoft Update ko download the latest service packs and security updates,

Setup Complete page

and the .NET Framework along with your hardware drivers updates, all in one stop!

It's also important to verify that your antivirus application
and its signatures are up-to-date and that you have updated
antispyware installed. Finally, in Control Panel, open the Security
Center, and make sure all lights for the firewall, virus protection,
automatic updates, and all other security settings are green. If
not, address those issues to prevent any security hazards.

Click the Exit button when you are done. If you elected to
send the feedback of your installation to Microsoft on exit, the
setup application will send it to Microsoft's servers, as shown in
Figure 2-9.

Setup

Al Please wait while setup iz sending your
| y| feedback.

e ——— |

Cancel

Sending installation feedback to the
Microsoft servers

This chapter focused on installing Visual Basic 2008 Express Edition. It addressed most
issues you might encounter during the installation, it covered different setup scenarios, and it
provided links to MSDN for more help.

After working through this chapter, you should now have the .NET Framework 3.5, Visual
Basic 2008 Express Edition, MSDN Express Library for Visual Studio 2008, SQL Server Com-
pact 3.5, Silverlight 1.0, and SQL Server 2005 Express Edition installed and ready to go. Your
computer should also be up-to-date with all updates installed and all security settings on

green.
Whenever you're ready to explore the integrated development environment (IDE) and

write your first two applications, just jump to the next chapter.

Chapter 2: Installing Visual Basic 2008 Express Edition

23

Creating Your First
Applications

Three Types of
Applications: What Are
the Differences?, 26

Getting Started with the
IDE, 28

Building the Projects, 31

You've installed Microsoft Visual Basic 2008 Express Edition, so now it's
time to create your first applications. You'll start this chapter by learning
about the differences between console applications, Windows applications,
and Windows Presentation Foundation (WPF) applications. You'll then look
at the integrated development environment (IDE). As its name implies, the
IDE is the application that provides all the tools you need to design, plan,
develop, and distribute your applications. You could use any text editor, such
as Notepad, for example, to create your applications, but in this chapter and
for the reminder of the book, you'll be using the IDE.

Most programming books usually start with a fairly simple application
called "Hello, World.” Your first application will be a simple application as
well, but you'll be creating an application that does a little bit more than just
say “Hello” to the world. Specifically, you'll learn to create an application that
adds two numbers together and outputs a result. With this application you'll
also learn about Solution Explorer as well as the documentation and Help
system built into Visual Basic 2008 Express Edition.

Three Types of Applications: What Are the Differences?

Please note that console appli-
cations are still executed in
Windows but in the console.

Console applications can be
written in many different pro-
gramming languages (C, C++,

C#, Visual Basic, and so on) and
scripting languages (Perl, Python,
JScript, and so on).

'y

In this chapter, you'll create two versions of the same application: a console application
and a Microsoft Windows application. You might wonder why you even have to worry about
the type of application when you're creating a program. Often, the type of application you
create depends on the purpose of the application and how users will interact with it.

Sometimes your application doesn’t need to have a graphical interface. For instance,
some applications need to be executed in a script or a batch file, or they don't need a
graphical interface because no user usually interacts with the application except to start it.
This type of application is called a console application because everything is displayed in a
system console window. You might have heard these types of windows referred to by many
different names: a DOS window, a command prompt window, or simply the command
window. The most common output in a console application is simple text.

Figure 3-1 shows the result of the famous “Hello, World" application as a console
application.

B Adrninistrator Comrmand Prompt ol x|

IC:sUserssppellandsDocumentssUisual Studio ZBBS\Pl-ojects\Helloum-ld\Hellm-m1-1d\hin\Dehug)He=
1loworld.exe .
Hello, Yorld from a Console Application

C:sUserssppellandsDocumentssUisuwal Studio 2808“Projects“Helloworld~HelloworldsbinDebug>

A console application

Simple text (also called ASCII characters) is the usual output of a console
application, but some console applications use ASCII graphic characters.
(ASCII stands for American Standard Code for Information Interchange.)
An ASCII code is the numerical representation of a character (such as 0
or #) or an action of some sort. Pressing Enter in a word processor to
move to a new line of text is an action represented by an ASCII character,

for instance. The ASCII graphic character set, also called extended ASCII
characters, includes vertical lines, vertical double lines, corners, and much
more. ASCII characters are sometimes used to create boxes around text in
console applications. Unicode characters are similar to ASCII but are not
encoded in the same way. They are more extensive and can represent dif-
ferent locales.

Console applications can be much more complex &
than the "Hello, World"” example shown here. In fact,
they can have as rich a set of features as Windows
applications. The only difference is that they don't have el RIS R
a graphical interface. For example, in corporate data
centers, many applications execute all day and night,
producing a large amount of data. It would be time-
consuming and problematic to rely on people to verify
the data. So, data centers are usually highly automated
to facilitate this job; they use console applications that
produce, manipulate, and verify the data in scripts or
batch files. L . A Windows application includes a graphical

In contrast to a console application, a Windows interface.
application has a graphical interface, as shown in
Figure 3-2. (This type of application is also called a Windows
Forms application in .NET.)

These applications are usually accessible from the Windows
Start menu, and by default they share some common characteristics,

95 Forml [=ErE=]

A Windows service is a type of
Windows application that runs

such as a Close button, a Maximize button, and a Minimize button, as = on Windows in the background;
R it doesn’t have a user interface,
shown here: doesn’t produce any visual out-
A third type of application—a WPF application—also birinie Cow put, starts when WingeRi
; . Lo . - and doesn’t even require a user to
has a graphical interface and looks similar to a Windows B Windowl === be logged in to start executing.
e .- Windows XP Service Pack 2 (SP2)
application; however, WPF applications use a completely and the Windows Vista operat-
different set of libraries to generate their executable ing system come with roughly
il F k in this chapt iti ht that four dozen Windows services. For
iles. For our work in this chapter, it is enough to say tha R A example, one built-in Windows
WPF applications can provide a richer experience and service validates your user name

and password at start-up.

use a different approach for their design.

Figure 3-3 shows a WPF application in action. | will
explain them much more fully in Chapter 6, “"Modifying
Your Web Browser.”

A WPF application

s/ /4

To get started writing the code for the console version of your first application, you'll need
The first time you start Microsoft to start Microsoft Visual Basic 2008 Express Edition. To do this, follow these three easy steps:
Visual Basic 2008 Express Edition, -

it will take some time to load click Start, click All Programs, and then click Microsoft Visual Basic 2008 Express Edition.
because the IDE i BEIIEESE. Before we go further, let's pause and admire the IDE in all its glory. Look at Figure 3-4,

ured for the first time. i
and feel the excitement.

Getting Started with the IDE

Start Page - Microsoft Visual Basic 2008 Express Edition
File Edit View Tools Window Help
HE =R R ™ - N RCER 0= N B I IR R R N N TR D
%] Start Page ~ x| Solution Explorer |
g 4 "
=
=
Recent Projects MSDN: Visual Basic Express Edition
@ HelleWerldWPFApp MNovember Release for Visual Studio 2008 and the .NET Framework 3.5
@ Hellowoerld Thu, 8 Moy 2007 18:44:13 GMT - Micrescft has announced that it will release
] Helloworld Wisual Studic 2008 and the .NET Framework 3.5 by the end of November 2007
&E MyFirstWindowshpplication Popfly Explorer Beta is released!
& MyOwnErowser Thu, & Mowv 2007 18:44:13 GMT - Popfly Explorer is a plug-in for Visual Studic
@ B aChisclefpip bty Express that lets you create and host a Popfly web sites, share your prejects with
Download the Visual Basic Power Packs 2.0
o : Fri, 12 Oct 2007 18:44:13 GMT - The new Line and Shape controls included in this
pen: Project...
e : Proj wersion enable you to draw lines, ovals, and rectangles on ferms and containers.
hade i Complex graphics techniques such as gradient fills can be accomplished by just
Coding4Fun: MultiWall - Wallpaper Tool for Multiple Monitors =
Getting Started Fri, 12 Oct 2007 18:44:13 GMT - See how to create a utility to manage your
Windows desktop wallpaper with separate images per screen.
Create Your First Application Source Code for .NET 3.5 Framewark Libraries
Video Feature Tour Fri, 12 Oct 2007 18:44:13 GMT - That's right, we'll be releasing the scurce code for
Learn VB the .MET 3.5 Framewerk Libraries with the Visual Studic 2008 release later this year!
What's Mew? Oooh, Pretty Colors!
Beginner Developer Learning Center Fri, 12 Oct 2007 18:44:13 GMT - Check out these cool color schemes to customize
Bewrlesa ARl Corat your Visual Studio development envirenment! Binary doesn't have to be black
MSDN Forums Great benefits for registered Express users!
. Tue, 7 Nov 2006 18:14:58 GMT - More goodies and freebies available for all
Visual Basic Developer Cent J a°
S i registered Express users, including MAKE magazine discounts, Intermatic home
Visual Basic Express Headlines
Free Visual Studio 2008 Hands-on
Training from InnerWorkings L
-
Ready
Figure 3-4

The IDE in all its glory

28 Microsoft Visual Basic 2008 Express Edition: Build a Program Now!

If you're not feeling the excitement yet, you soon will be. The development environment
has been designed to make a lot more information available up front and to make you more
productive more quickly. From this screen, everything you need to build an application is
available in a couple of clicks. This is where you type your code, compile your code, launch
the application, find your mistakes and fix them, get help on the syntax, and perform many
other tasks. Furthermore, the Visual Basic 2008 Express Edition IDE is designed to generate a
lot of code for you so that you have less to type. If you didn't have the IDE and you wanted
to write a Windows Forms application, you would have to type a lot more code, and this is
prone to errors. With the IDE, most of the actions you'll perform will automatically generate
the code for you behind the scenes.

As you spend more time with the IDE, you'll find that there are many ways to perform
the same actions. For instance, to complete a specific action, you can use a series of menu
choices, you can use a keystroke shortcut, you can click an icon on a toolbar, you can click a
hyperlink in a page, or you can right-click and choose an option from a context-sensitive
menu. Before diving into our first application and before writing some code, we'll go
through each big component of the IDE.

The first page you see when you start the IDE is a really useful one: the Start Page. It
contains a lot of useful information:

[Recent Projects pane Here you'll get the list of projects or solutions that were
recently opened. You can also create a new project or open an existing project that is
not in the list.

[l Getting Started pane | call this useful pane "Help Central” because if you need
quick help, this is one of the best places to get answers. Whether you need help with
some Visual Basic constructs, you want to see a list of how-to articles, or you simply
want hyperlinks to communities of programmers, you can often find these items in the
Getting Started pane of the IDE.

[Visual Basic Express Headlines pane This is where you find specific news about Visual
Basic Express Edition from Microsoft. These product headlines deliver special messages
specific to Visual Basic 2008 Express Edition and announce new updates, new releases,
new code snippets, or anything that needs attention on your part.

The first and only rule of this
book is to not be afraid to experi-
ment. Click, look, read, and try
whenever possible. This is really
the best way to learn. I'll show

you some important material,
tips, and tricks throughout this
book, but my advice to you is to
go beyond these examples and
just try and try and try.

I will show you how and where
to look for this generated code
in Chapter 5, “Using Rapid

Application Development Tools
with Visual Basic 2008.”

Some hyperlinks on the Start
Page require a live connection to
the Internet. So if you are unable

to read the hyperlinks, please
verify your Internet connection
status.

The Microsoft Developer Network
(MSDN) is a set of online and
offline services designed to help
developers write applications
using Microsoft products and
technologies.

If you don’t see Startup and other
settings in the Options dialog
box, ensure that you select the
Show All Settings check box

in the lower-left corner of the
Options dialog box.

MSDN feeds This pane of the Start Page includes hyperlinks to articles from one of

MSDN's Really Simple Syndication (RSS) feeds. You can configure these articles for any
valid RSS feed from the Web. The default is set to the MSDN Visual Basic 2008 Express
RSS feed. These articles are usually different from the ones under Visual Basic Express

Headlines; occasionally they might be the same, but the articles from MSDN cover not
only Visual Basic Express Edition but also topics including Visual Studio Team Systems,
Microsoft SQL Server, Web services, and so forth. You can modify the feed by clicking
Tools and then Options, expanding Environment, selecting Startup, and updating the

Start Page News Channel field with a valid RSS feed of your choice.

Some important components of the IDE are not part of the Start Page:

Menu bar This is where you can select and perform almost all possible actions related
to your projects, files, and Help. The options available change based on the current
context. For example, when you don't have a project open, you have fewer menu choices:
File, Edit, View, Tools, Window, Community, and Help. When a project is open, the menu
choices will also include Project, Build, Debug, and Data.

Main toolbar This toolbar contains icons that are essentially shortcuts to popular
actions that you can also perform by going through the menus.

Toolbox The Toolbox contains controls that are used in your applications. If you scroll
over the Toolbox on the left side of the Start Page, the Toolbox will expand. If you don't
have a project open, the Toolbox will be empty. At this point you can think of controls as
visual elements in Windows applications that possess a graphical interface. For instance,
once a project is opened, the Toolbox will include buttons, labels, text boxes, menus,
toolbars, and so on. I'll explain these controls in greater detail in Chapter 5.

Solution Explorer This feature lists the files and components in your project. If no
project is open, it will be empty. You'll learn more about Solution Explorer later in this
chapter.

Status bar The status bar displays a wide variety of information corresponding to
the state of certain active operations. For instance, when you load a project, you'll see a

message on your screen such as “Loading project c:\blabla\blabla.vbproj from your hard
drive.” When you're building an application, you'll see something like "Build started,” and
when the application has finished, you'll see “Build succeeded” or "Build failed” depend-
ing on the success of the process.

Building the Projects ' ' '

From this point on, you'll focus on what you really came here to do: build some projects.
Let's start with your first application—the console version of the application that adds two
numbers together.

For demos and samples, | r
mend you type all the so
code in the following exa
so that you can better u
the concepts involved.
for longer source code
you can also downloa
pleted code sample
www.microsoft.co
companion/97807.

Building a Console Application

We've been talking about what a console application can do and what it will look like, so
why don’t we build one? In this section, you'll create a simple mathematic application.

TO BUILD A CONSOLE APPLICATION

By default in Visual Basic 2008
Express Edition when you click

1. If Visual Basic 2008 Express Edition is not running, start it by clicking Start, All Programs, OK, projects are created in a

. temporary location. When you
Microsoft Visual Basic 2008 Express Edition. save or close the projectt IR

saved in Documents\Visual Studio

You can choose to start building your application either by clicking the New Project icon 2008\Projects. (On Windows XP

on the toolbar, by selecting Create: Project from the Start Page, or by clicking File, New and Windows Server 2003, you'll
. find them in My Documents\
Project on the menu bar. Visual Studio 2008\Projects.)

. . S . Y hange the default proj-

2. In the New Project dialog box, select Console Application in the Templates section, and e::',:i:t?c,:"bgyec“ciinzaT:',M':,roj

type MyFirstConsoleApplication in the Name box. The New Project dialog box should Options, Projects and Solutions
L. . X . . and finding the first text box
be similar to the one in Figure 3-5. Click OK to create the project. named Visual Studio Projects

Location. We'll look into what

files are created and what their
content is in Chapter 5.

Chapter 3: Creating Your First Applications 31

If you accidentally close
Explorer, you can get i
clicking View, Solutio

IS)

New Project =]
Templates:

Visual Studie installed templates

FE s = W

Windows Class Library WRF WPRF Browser Console
Farrms Ap.., Application Application Application

My Templates

Search
Online Te..,

A project for creating a command-line application (MNET Framewark 3.5)

Marne: MyFirstConsolefpplication

Ok] ’ Cancel

Figure 3-5
Creating a console application using the New Project dialog box

You should now see the IDE in an idle state waiting for you to write the application’s
code. Your screen should look like the one shown in Figure 3-6.

Getting to Know Solution Explorer

Before you write the code, you need to learn about Solution Explorer. Shown on the right
side of the screen in Figure 3-6, Solution Explorer provides an organized view of your
projects and all the files associated with them, as well as some useful commands in the form
of a toolbar. You'll find all the source code files, the project settings, the resource files (such
as the application icon), the configuration files, and so on, in Solution Explorer.

32

Microsoft Visual Basic 2008 Express Edition: Build a Program Now!

File

&?

fi

B

ik

-

Edit View Project Build Debug

A AR A Y

Data Teols

Window Help

S9-0-S-B|) i @5 [=

Modulel.vb| Start Page |

- X

#4 Modulel

-

[l Module Modulel

| »

: HyFlmﬁmsoleAppllcatlon
Bl My Project

Sub Main() L. 18] Medulelvb
End Sub
End Module
Properies I
Main Attributes -
Bs: ==
=S
< I 3
Ready Col9 Chg INS
Figure 3-6

MyFirstConsoleApplication without the code

If you want more information about Solution Explorer, you can always do a search in the
Help system and product documentation. Before trying to perform a search, please read the

next section; you'll learn a lot about all the information that is at your disposal.

Note that the Start Page is still
available; it's simply a separate

tab. You can go to any window by
clicking a specific tab or by press-
ing Ctrl+Tab.

Chapter 3: Creating Your First Applications

33

Getting Help: Microsoft Visual Studio 2008
Express Edition Documentation

If you want to read more about Solution Explorer, you need to be introduced to Help
and the documentation system. You access the documentation by pressing F1 from within
Visual Basic 2008 Express Edition or by using the Help menu. The first time you press F1 or
use the Help menu, you'll be greeted with the Online Help Settings dialog box, as shown in
Figure 3-7.

Online Help Settings [®l=

?Y7)

Help is available online from MSDM and third party Web sites as well as your local Help
installation. Online content includes the latest updates to the docurmentation, Help source choices
can be changed in the Options dialog box under /Help/Online,

When launching Help

@ Use anline Help as primary source

If you are not connected to the Internet, local Help is used,

~ Uze local Help as primary source

If no information is available locally and you are connected to the Internet, online Help is
used.

' Do not use online Help

Read the privacy statement...

Ok ‘ [Cancel

Online Help Settings dialog box

This dialog box prompts you to choose a primary Help source; you can choose online
Help as a primary source, local Help as a primary source, or no online Help at all. Think
about your options carefully. If you don't have a broadband (cable, DSL, or satellite) Internet
connection, | suggest you choose local Help as the primary source; otherwise, choose online
Help as your primary source since it is the best source for the latest information.

Once you've made your selection, you'll see the documentation’s graphical interface, as
shown in Figure 3-8.

File Edit View Tools Window Help
i) Back € [¥] [# & A | @ HowDel - Q, Search i_é]ndex @Contents [T]Help Favorites | E‘f x =i | %) MSDN Forums |4 =
Contents > X Visual Basic Language Keywords@ - X
Filtered by

F1 Options: (choose) + URL: httpy//msdn2.microsoft -

“isual Basic Express Edition =
P “Wisual Basic Language Reference e

Micrasoft MEDM Express Library 2 |8 \isual Basic Language Keywords
Help on Help (Microsoft Docume

m

[E] Callapse all L
(7 Zend Click to Rate and Give Feedback 5ryrs.rorig

ation and is subject to change in future releases.

The following tables list all the Yisual Basic language keywords,

(] Reserved Keywords

The following keywords are reserved, which means you cannot use thern as names for
your programming elements such as variables or procedures. You can bypass this
restriction by enclosing the name in brackets ([1), For mare information, see "Escaped
Mames" in Declared Element Mames.

¥ Note:

Using escaped names is not recommended, because it can make your code hard
to read, and can lead to subtle errors that can be difficult to find.,

AddHandler Addressof alias and
-
4 r!r. d Andalso As Boolean ByRef
@ Contents [3 Index EHe\‘p Faoo | (] 1 G
Ready
Figure 3-8

Microsoft Visual Studio 2008 Express Edition documentation

The toolbar at the top of the window includes several interesting elements that will
help you find exactly what you need. Figure 3-9 shows the most important buttons on the

toolbar.

Chapter 3: Creating Your First Applications

Ealrwey 4o Four Repart n by

Semsch S Syncheonkre TOC or Susgpeslion
% How Dol - Saa|rn:h _chindex & Contents] Help Favorites | = ' | %4 M5DH Forums :’L&
Task Based Topics: Smen A ln

HelpSemsch WD Forems

Important buttons on the toolbar

For example, let’s say you want to learn more about Solution Explorer. Click the Search
button on the toolbar, and the search page opens. Enter your search query (in this example,
type Solution Explorer), and either press Enter or click the Search button. The Help results
come from four sources:

Local Help This source is fed by the MSDN Library (part of the product installation)
and is installed on your hard disk (if you selected it during installation).

MSDN Online This source contains the most up-to-date information from MSDN
Online.

Codezone Community The Codezone Community is a set of Web sites based on
Microsoft developer products. To see a list of all Web sites that are researched, click
Tools, Options, and then select Online under Help in the list of items at the left. Fig-

ure 3-10 shows the dialog box you will see. Notice the list of Web sites on the right that
are part of the Codezone Community. In the future, this list might expand to show more
sites to provide even better coverage of the community.

In the same dialog box, you can customize settings related to the Help system. On the
General tab, you can set up how the Help system retrieves and presents information. You
can set up the international settings to get local Help in the language of your operating
system, if available, and get online Help in a predefined list of languages supported by
MSDN. You can also view the keyboard shortcut for menu commands used through-

out the product (for example, notice that the shortcut for Copy is Ctrl+C) or assign new
shortcuts to commands that might not have one already.

Options ==

Environment When loading Help content
Faonts and Colors @ Try online first, then local
Help () Try lacal first, then anline
General () Try lacal anly, not anline
Online
International Settings Search these providers: Codezone Cormmunity:
Keyboard IASDM Online = 4iGuysFromRolla.com -
WebBrowser [¥] Codezane Comrmunity [¥] Aspalliance.corm |;‘
[¥] Questions [¥] C# Cornercom —
[¥] Local Help [¥] CodeGuru.com

DevCitynet
Developer Fusion (UK} =

4iGuysFromRolla.com is one of the
Internet's largest Active Server Pages |
and MET resource sites, 4Guys

-

Read the privacy statement.,

I QK I l Cancel

Options dialog box with the online settings, including the Codezone Community Web sites

M Questions This type of query searches the MSDN Online forums (http.//forums.
microsoft.com/msdn/). These forums are hosted by Microsoft and are an excellent
source of information because they have questions and answers on topics asked by
other programmers of all levels and experience. There's a good chance that somebody
has already had the same problem or the same question as you, so your chances of find-
ing an answer to your problem in the MSDN Online forums are good. Furthermore, you
can have confidence in the answers you get because answers on the MSDN forums are
often validated by Microsoft employees or MVPs. A check mark in a green circle tells you
which answer has been validated as correct.

Coding Your Console Application

Now that you know how to get help if needed, you are ready to code your first console
application.

MVPs stands for Most Valuable
Professionals. MVPs are profes-
sionals who are not Microsoft

employees but are recognized
by Microsoft as experts in their
fields.

Comments in the source code
start with a single apostrophe ().
Developers can use comments

to explain the operations and
purpose of their code so that it is
easy to maintain and understand.
(It's not rare to see developers

staring at their own source code a
few months after it was written.)
Use comments to explain pieces
of code that are more complex or
that you think are more impor-
tant; do not comment pieces of
code that are obvious.

You can also save
ect by pressing
the current file
Ctrl+Shift+S to

T m

Build succeeded

Figure 3-11
Status bar with "Build succeeded”
message

TO CODE A CONSOLE APPLICATION

1.

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15

16
17

2.

To begin, type the following code in your code window (minus the line numbers):

Module Modulel
‘ This application will take two numbers and display the sum
Sub Main()
‘ Declaring two integer variables that will hold the 2 parts
‘ of the sum and one integer variable to hold the sum
Dim numberl, number2, sum As Integer

“ Assigning two values to the integer variables

numberl =10

number2 =5

‘ Adding the two integers and storing the result in the sum variable
sum = numberl + number2

‘ Displaying a string with the 2 numbers and the result.
Console.WriteLine(“The sum of “ & number1.ToString() & “ and “ &
number2.ToString() & “is “ + sum.ToString())
End Sub
End Module

Now that the code is in the window, you can save your work by clicking the Save button.
This will save the current file. Or you can click the Save All button to save all the modified
files in the project.

Now it is time to build (or compile) the application. Click the Build menu, and then click
Build MyFirstConsoleApplication.

If you typed the code exactly as it appears, you should see the message “Build suc-
ceeded” in the status bar at the bottom of the window (see Figure 3-11). If something
went wrong, you'll see errors in the Error List (as shown in Figure 3-12). If you typed the
code and have errors, try copying and pasting the code from the completed code
samples (http.//www.microsoft.com/mspress/companion/9780735625419) instead of
typing it. Then build the code again.

38

Microsoft Visual Basic 2008 Express Edition: Build a Program Now!

Error List
| o) 1 Em_}r| | i Warnings] I i) 0 Messages

Description File Line Column

..J]. Mame 'Consle’ isnot Medulel vk 16 g

declared.

Error List with errors

Project

MyFirstCensclefppli
cation

In Chapter 7, “Fixing the Broken Blocks,” you'll learn about all the debugging techniques

you can use when you get an error.

To see the execution results of your application, click the Start Debugging button in the

main toolbar (or hit F5).

Wow! That was fast, wasn't it? You probably saw a command window for a few seconds,
and then it disappeared. It didn't leave you a lot of time to see whether your application
displayed the expected output. In the next section, you'll look at a new way of running your
application to solve this problem. To do this, you'll need to customize the IDE.

Customizing the IDE

You can easily customize the IDE to fit your needs. Here, you want to execute your appli-
cation and then have the application pause automatically at the end of the last instruction to
give you as much time as you need to view the output. You'll do this by adding an icon and
its attached command to the main toolbar and to the Debug menu. The name of the com-
mand you'll add to the IDE is Start Without Debugging.

TO CUSTOMIZE THE IDE

Click the Tools menu, and then click Customize.

In the Customize dialog box, select the Commands tab.

777

Learning to Read Code

I will explain a lot of the source
code in this book, but after
explaining some topics more
than once (or twice), I'll usually
explain only the new material.
To learn more about the code,
you can read the helpful com-
ments ['ve included in the appli-
cation source code.

In addition, at the end of
each chapter, | will include
hyperlinks that point to articles,
videos, and white papers, and
I will often include keywords to
help you search for more infor-
mation in the online Help. That
should help you progress in
learning the language and .NET
in general. Although this book
is showing you what you can do
with the product and the steps
to get there, it's not a book on
object-oriented programming
(OOP) or the Visual Basic lan-
guage itself. You can expand
your knowledge even further by
reading the code comments and
investigating the links and key-
words presented.

7m7.

Both Figure 3-14 and Figure 3-15

3. In the Categories area on the left side of the window, select Debug.

4. Scroll down in the Commands area, and select Start Without Debugging.

Your screen should now look like the one in Figure 3-13.

Now you must add the command to the Debug menu. To do that, drag Start Without

have the “before” version toward

the left and the “after” version
toward the right, overlapping the
“before” version.

Debugging from the Commands area, and drop it on the Debug menu. (Figure 3-14 shows
a "before” and "after” view of this process.) Now repeat these steps except this time drop

the command on the toolbar to the right of the Start Debugging button. (Figure 3-15 shows
a "before” and “after” look at the toolbar.) When finished, click Close in the Customize

Keybeard...] [Clese

I

Figure 3-13

Customize dialog box with Start Without Debugging selected

dialog box.
Customize 7 [Windows »
AT B | Start/ Continue F5
&= +m Tam o
Categories: Commands: [;—; Windows 3
Build A Set Current Stack Frame * b | Start/ Continue F5
Data - -
Database Dizgram % | Set Mext Statement I [> | Start Without Debugging Ctrl+F5
T I Set Radix o F| sepino F8
Edit = .
Eile 5> | Show Next Statement —— [Z| Step Over Shift+F8
Format P | Start/ Continue Exceptions... Ctrl+Alt+E
Hel, - r
Ne\.f Menu 2 . Start Without Debugging i Toggle Breakpoint =]
Project Step By i 49 | Delete All Breakpoints Ctrl+Shift+F2
Figure 3-14
a5, e T Before and after customizing the
ey 5= | Steplnto ; g .
View = Bais Debug menu with the Start Without
Window %z | Step Out - Debugging command
XML 2
Modify Selection v Rearrange Commands...
Te add 2 command, drag the command frem the Commands list and drop the command on the target [qu @ 5= [;E & |
| H
teclbar or menu. > n o [_._ &
I @ = E "=

Figure 3-15

Before and after customizing the tool-
bar with the Start Without Debugging
command

40

Microsoft Visual Basic 2008 Express Edition: Build a Program Now!

To make sure the customization worked, click the new menu item in the Debug menu or
the new icon on the toolbar. (Or, press the keyboard shortcut Ctrl+F5.) You should see a com-
mand prompt window with the expected output, which is the string "The sum of 10 and 5 is
15." You should also see the message “Press any key to continue,” as shown in Figure 3-16.

B C\Windows\system32icmd.exe _|al =|

The sum of 18 and 5 is 15
Press any key to continue . . .

Command prompt window with the expected result and a message indicating a paused execution

As you probably realize by now, the effect of the new command is to display the “Press
any key to continue” message and pause the execution after the last instruction executes.
Press any key to close the command prompt window and return to the IDE. When you're
done, you can close the project by clicking File, Close Project. You'll be prompted to save or
discard your changes. Click Save, and then if the name and location are fine, click Save again
in the Save Project dialog box.

Creating a Windows Application

You just built a console application. The next step is to develop the same application but
as a Windows application. What you will develop is a real Windows application, but it won't
do much. You'll create a fully functional Windows application in Chapter 5.

TO BUILD A WINDOWS APPLICATION

When creating the console application, you saw the New Project dialog box. Open it
again by clicking File, New Project.

This time, select Windows Forms Application in the Templates section, and type MyFirst-
WindowsApplication. Make sure your screen looks like the one in Figure 3-17, and
then click OK.

-

New Project i il

Templates: El

Visual Studic installed templates

O @ B A

Windows Class Library WRF WPF Browser Console
Farrms Ap.., Application Application Application

My Templates

Search
Online Te..,

A project for creating an application with a Windows user interface (MET Framewark 3.5)

Marne: hyFirstiindows Application

Ok l [Cancel

Creating a Windows application using the New Project dialog box

You'll immediately see that the result of this operation is quite different for the Windows
application process than it was for the console application process. You should see the
Windows Forms Designer, as displayed in Figure 3-18.

File Edit View Project Build Debug Data Format Tools

Window Help

G A ¢ BB EE0 - BB uomSEE% QAR EHEL

~ Form1.wb [Design]* Start 2§£|

-

X

|xoqmoj_ag

Solution Explorer S

2 e E e

(28 MyFirstWindowsApplication
i [l My Project
.. 5] Fermlvb

@ Seluticn Explerer |-] Data Sources

Properties > 1 X

Forml SysternMindows.Forms.Form

(=

@ # |E
ShowlnTaskbar True 2
Size 300, 300

SizeGripStyle Auto
StartPosition WindowsDefaultl

Tag L4
Text Forml -
Text

The text associated with the contral,

Ready

Figure 3-18
IDE with the Windows Forms Designer and an empty form

3. On the left side of the IDE, move your mouse over the Toolbox to open it. Click the
plus (+) sign next to Common Controls. You'll see a list of form controls that are

common in a Windows application.

4. Drag the Button control to the designer surface. Your form should look like the one in

Figure 3-19.

You now have a full and valid Windows application without having written a single
line of code. The application doesn't do anything very useful at this point, but it

@ Forml = |[E]ER

i _|

works! You can easily verify this by running the application. Just hit F5 to see for

Figure 3-19
Windows Forms Designer surface with a

Button control

Chapter 3: Creating Your First Applications

43

yourself. This is part of the magic of using the Visual Studio IDE environment for pro-
gramming instead of using a text editor such as Notepad. Visual Studio writes a lot of
code for you, and in Chapter 5, we'll look at some of the activity that's taking place
behind the scenes to make it appear like magic. When you have finished, click the Close
button on the form to return to the IDE.

Double-click the button on the designer surface. You'll get the familiar source code win-
dow but with different content this time. For now, type or copy the code between Sub
Main() and End Sub from the console application you created previously and add it to
the Buttonl_Click method, as shown in Figure 3-20. (You'll learn more about this method
and the whole process behind the double-click in Chapter 4, “Creating Your Own Web
Browser in Less Than Five Minutes.”)

o\" Buttonl | # Click.

-
 @Pwslic Class Forml 1
-

g Frivate ZSub Buttonl Click(EyVal sender is Jystem.Cbject, ByVal e

! Declaring two integer numbers wvariables that will hold the
! ‘gf the ‘sum snd ohe integer varisble to hoeld the ‘sSum
Dim nuwberl, nuwberZ, sum As Integer

' Assigning two walues to the integer wvariabhles
nunberl = 10 =
nunbersZ = 5

! ‘Adding ‘the two integers and storing the result in the sum 5|
sum = numberl + numberi

'Displaying a string with the 2 numwbers and the result.
Console.WritelLine ("The sum of " £ numberl.ToString() £ " and
- End Sub
LEnd Class

1 m | +

Button-click method with the code from our previous example

In the source code, find the words Console. WriteLine, and replace them with the words Ill

MessageBox.Show. Then build and execute the application by hitting F5. Keywords and Links to

When the form opens, click the button, and you'll see the result of your application: a More Information
message box with the same string you saw in the console application. It should look like If you want to read more about
Figure 3-21. Click OK in the message box, and then quit the program by clicking the some topics covered in this

Close button on the main form.

% Formi [=[&][]

Vindew Help

[=

(S = g bow

Click

sender Ls Iystem.Chiec

ers-wrarciskles what wil
variable -to hold -the
Integer

'Displaying a string with
MessageBox. Show (" The
End Zub

The sum of 10 and 5 is 15

Output of MyFirstWindowsApplication

Congratulations! You just created your first two applications: a console application and a

Windows application.

chapter, simply create a search

query by pressing F1 and then
type the following keywords:
declaring variables and string
concatenation.

The videos from MSDN
are another good source of
information. These videos were
specifically created to cover
Visual Basic 2005 Express
Edition, but they are for the
most part still applicable to
creating your first applica-
tions using the 2008 version.
You can find the video for
Lesson 1, which covers get-
ting started with Visual Basic
Express Edition, at the follow-
ing location: http://msdn2.
microsoft.com/en-us/beginner/
bb308737.aspx.

7”77

In this chapter, you learned some key information that will help you build on the skills
you started developing in the previous chapters. You learned the differences between con-
sole applications, Windows applications, and WPF applications. You started Visual Basic 2008
Express Edition, explored the IDE, and learned its major components. In addition, you cre-
ated two versions of the same application: a console application and a Windows application.
While learning about console applications, you also learned what Solution Explorer is as well
as how to search and use the product documentation and the Help system.

In the next chapter, you'll build on this knowledge and write a simple Web browser.

46

Microsoft Visual Basic 2008 Express Edition: Build a Program Now!

Creating Your Own
Web Browser in Less
Than Five Minutes

What Is a Project?, 48 Now that you've gotten a little experience creating simple applications in
) Microsoft Visual Basic 2008 Express Edition, you'll build a more complicated
What Is the Design application in this chapter and finish it in Chapter 6, “Modifying Your Web

?
Layout?, 49 Browser.” In this chapter, you'll start with the basic framework of the applica-

tion; in the next two chapters, you'll continue to learn new features and then
use them to enhance your project.

Specifically, in this chapter you'll learn how to build your own basic Web
browser, and you'll be able to do it in five minutes or less!

Putting It All Together, 56

What Is a Project?

In the previous chapter, you created a project to hold your source code. I'll now take a
moment to explain what a project is and what information it contains. A project is a container
for all the items in your application, such as forms, source code, and resources. It also stores
important configuration data that belongs to the application as a whole, such as the loca-
tion of the executable (that is, binaries) on your hard disk, the version information, and many
more settings that affect the characteristics of your application. For instance, a project stores
programmer-defined application settings that are important for the user experience. Users
love to customize their software environment to reflect their comfort level and personal
styles, for example. You've probably set up specific user preferences in Windows Internet
Explorer, such as your home page address, your home page settings, which toolbars are
displayed, whether your toolbars are locked in size, and so forth. A typical use of application
settings in a project is to make sure the application can preserve user customizations from
one execution to another.

In Chapter 6, you'll learn about some of the most important settings stored in the
project configuration file and how to use them in your application. In the final chapter
of this book, you will use programmatic techniques to preserve the user’s settings and
customizations.

The name you choose when you create your application becomes the project’'s name.

It also becomes the default folder name on your hard disk where your application is stored
when you save it, and this name becomes the default namespace of your application. A
namespace is used to organize the classes in a program in a single, logical hierarchical struc-
ture. It does the same for any other types you might define. The creation of a namespace
also helps prevent naming collisions. What is a naming collision? Let's look at an example to
illustrate this concept.

Suppose a company called AdventureWorks wrote a new Windows Forms class
named ANewForm. The company would create a namespace called AdventureWorks and
put its ANewForm class in it to uniquely name the class. The fully qualified name of a class

is always composed of the namespace followed by a dot and then the name of the class or
classes. Therefore, AdventureWorks's unique class would be AdventureWorks.ANewForm.

Now let's suppose you are creating a new project using Visual Studio and decide to
name your project MyLibrary. Visual Studio would then create for you a namespace called
MylLibrary. Suppose you then define a new class and name it ANewForm. You might not
be aware that a company called AdventureWorks also called its new class using the same
name. Even though AdventureWorks might be performing completely different tasks with
its class, a problem could arise because the two classes are named the same.

Now suppose you're trying to use both classes called ANewForm in your new applica-
tion. If you simply use ANewForm, the compiler will not be able to determine which ANew-
Form class you want to use—the one from your library or the one from the AdventureWorks
library; this is a naming collision. By prefixing the class name with the namespace name,
you tell the compiler exactly which class you want to use (AdventureWorks.ANewForm or
MylLibrary. ANewForm).

What Is the Design Layout?

You will soon create a new design layout in the form designer. In doing so, you'll be cre-
ating what the application contains and how its content is presented when the user executes
the application.

To accomplish this phase of a project, you typically do not need to type a great deal of
code; as explained later in this chapter, Visual Studio takes care of this code for you. You have
to worry mostly about how your application looks. When you're done designing all the visual
aspects to your liking, your next task usually involves attaching the source code to your
visual layout so that your application reacts to and acts upon the user’s input.

In this chapter, you will complete the basic layout. You will learn more advanced layout
techniques in the following chapters. Let's start the Web browser project now.

To Create a Simple Web Browser

1. Start Visual Basic 2008 Express Edition by clicking Start, All Programs, and then Microsoft
Visual Basic 2008 Express Edition.

2. Create a new Windows Forms Application project using any of the techniques shown in
the previous chapters; for instance, you can use either the File menu or the New Project
icon in the toolbar. Name the new application MyOwnBrowser.

3. On the design surface, you'll see the empty form with a title bar named Form1. Click the
title bar once. Look at the Properties window on the bottom right of the IDE, as shown in
Figure 4-1.

) Ity O Browsser - Microsoft Visual Bas F?Sﬂﬁ%‘%ipress Edition
File Edit Wiew Project Build Debug Data Tools Window Help
P -l % BRSS9 - 8-2 0 b ouoE QARG

)f; ~ Form1.vb [Design] SGE Eagg] ~ X | Solution Explorer - 1 x
= 2l E|EE
g || | % Form1 =er=l [MyOwnBrowser
G -~ [Zdl My Project
&) Formlub
[Fropetties o
||| [Form1 Systern Windowss.Farmz.Form i

Evror List TR B Padding 0,0,0,0 %

= RightTaleft Mo
0 Ervors | [6 0 Warnings||[Li) 0 Messages

lg “IA ‘u RightToleftlayout False

Description File Line Column Project Skiowiton Trile
ShowlnTaskbar True =
Size 300, 300 (
SizeGripStyle Auto -

Text

The text associated with the control,

Ready

Figure 4-1
Properties window for the MyOwnBrowser application form control

Microsoft Visual Basic 2008 Express Edition: Build a Program Now!

We'll be using most of the properties you see listed here. Right now what is important for
you to understand is that most of these properties influence how the control you have
selected behaves or what it looks like when you execute your application.

For all the samples in this book, | suggest you sort the Properties window in ascend-
ing alphabetical order; it will be much easier to find properties that | reference in the
examples. To sort the properties in ascending alphabetical order, click the Alphabetical
button in the Properties window toolbar. The other option is to arrange the properties
by categories, but this might slow you down as you progress through this book.

Whenever you select a property, you'll see a brief description of its usage at the bot-
tom of the Properties window. Refer to Figure 4-1 as an example. In this case, the Text
property is selected, and at the bottom of the Properties window, you can see a succinct
message describing the function of the Text property.

As mentioned in Chapter 3, “Creating Your First Applications,” my best advice for

learning this software is to try, try, and try again. Visual Basic 2008 Express Edition comes
with a variety of tools and therefore many possibilities. You will learn to use most of these
tools by performing the exercises in this book, but it's impossible to learn all the varia-
tions and possibilities if you don't do some exploring on your own. With that in mind, to
understand the effect of changing a particular property, try all the possible values. Each
time you modify a property, build and verify the execution. However, don’'t make more
than one change at a time. If you do, it will be difficult for you to know which one of your
changes actually triggered a visual modification. By exploring possibilities one at a time,
you'll be able to see the effect of your changes immediately.

Make sure you have selected the form control named Form1l
as directed in step 3, and then modify the properties using the
values in Table 4-1. The property name to modify is located in Text

the left column, and the value to which to set the property is Size:Width
located in the right column. You may have already completed
this step, but to facilitate your data entry, verify that you have
sorted the properties in ascending alphabetical order.

Property

Size:Height

Form Properties to Change

Some properties have a plus

(+) sign beside them, which
means it's a tree view property.
Whenever you click the +, you’ll
expand this property to display
the property’s attributes, which
you will then be able to set.

Whenever you are asked to enter
values for properties that are in a
tree view, | will use the notation
structure Size:Width, which refers
to the Size property and the
Width attribute.

Value

My Own Browser
640
480

To add a control to a form, you
need to perform a drag-and-drop
operation. This means you'll
move your mouse pointer to the

Toolbox, drag the desired control
to the designer surface, and drop
the control onto it.

You'll now add three Windows Forms controls to your browser application: a text box
control in which to enter the destination URL, a button control to navigate to the Web
page, and a WebBrowser control in which the Web page content will be displayed.

Drag a WebBrowser control to the designer surface. The WebBrowser control is located in
the Toolbox on the left side of the IDE; it's the last control in the Common Controls section.

By default, this control will fill the designer surface entirely. Because you don't want
that behavior for this particular application, click the black triangle, as shown in the left
margin, which will produce the content of a Smart Tag. In this particular example, the
Smart Tag will help you undock the control from its parent container (the form). Click
the Smart Tag, and select Undock in the Parent Container.

Expand the control so it occupies almost the entire designer space. To do this, click any of
the control handles to change its size.

Select the WebBrowser control by clicking anywhere on the control. Then go to the Prop-
erties window, and modify the values for all the properties listed in Table 4-2. Modify the
values in the same way you modified the form controls in step 4.

(Name) myBrowser
Size:Width 607
Size:Height 385
Location:X 12
Location:Y 12

WebBrowser Control Properties to Change

Drag a text box control and a button control

%' My Own Browser == EE=]
from the Toolbox’s Common Controls section so 9 4
that your form looks like Figure 4-2. Change the
properties of the controls as you did with the
WebBrowser control in step 7. Select one control at
a time, and modify its properties with the data in
Table 4-3.
At this point, you have a complete Web browser—
congratulations! You can compile and execute your
application by pressing F5.
If you followed the previous steps exactly, your
application should now be running. Because we didn't
code any functionality, entering a URL and hitting the o o
GO button will not do anything. i
Control Property Value MyOwnBrowser application
Text box (Name) txtURL
Text box Location:X 12
Text box Location:Y 411
Text box Size:Width 526
Text box Size:Height 20
Button (Name) btnGo
Button Location:X 544
Button Location:X 411
Button Text GO

Controls, Properties, and Values

You first have to “wire up” the controls to the functionality that they will perform. | will
use an analogy to explain this fundamental concept. A light bulb by itself is not a useful
piece of hardware. To obtain light from it, you need to connect two wires carrying electricity.
Similar to what an electrician would do to create this electrical circuit, you need to attach, or
wire, the control and the action together by writing code to handle the event of clicking the
GO button. Keep this analogy in mind when you see references to the term wire or wiring in
this book.

Before we wire up the click action to the button, I'll explain the line of code you'll add
in the following instructions, and I'll explain how it relates to the OOP concepts previously
introduced in Chapter 1, “Introducing Microsoft Visual Basic 2008 Express Edition.”

When you dropped the controls onto the designer surface, you created instances of the
class represented by those controls. For example, when you dropped the WebBrowser con-
trol, you created an instance of the class System.Windows.Forms.WebBrowser that you then
named myBrowser. The WebBrowser class has many methods, and the Navigate method is
the one you'll use. As its name implies, this method allows the WebBrowser class to navigate
to a URL. A method in Visual Basic can be a subroutine or a function. The URL is passed as
an argument to the Navigate method. An argument, also called a parameter, is used to pass
data to a method.

The argument in this case is the text the user will enter in the instance of the System.
Windows.Forms.TextBox class that you appropriately named txtURL. To retrieve the content
of the text box control named txtURL, you use the Text property of that control. A property
enables you to set or retrieve the content of a data member in a class without accessing the
data member directly. That way, the provider of the class (for example, Microsoft) can modify
the implementation of the Text property without concerning the user with the implementa-
tion details. In OOP, this is called encapsulation. You can compare this process to a person
driving a car: you don’t need to know how the engine and transmission work to drive the
car. Another good example is the Navigate method. You don't need to know how it's imple-
mented; you simply want it to do its job. As mentioned earlier, many things are happening
when you design a form with Visual Studio. You have seen that you don't need to create any
of the classes or instances representing your controls because Visual Studio is doing all of
that for you!

TO WIRE THE CLICK ACTION TO A BUTTON

1.

Close the running application, and return to the IDE. Double-click the button control.
You'll see the code window, as shown in Figure 4-3.

¥ btnGo ~ ¥ Ciick -
[Public Class Forml

-

Frivate Zub btnGo Click(EyVal sender As ZJystem.Chject, ByVal & As Jystem.Eventirgs) H

End Zub
End Class

Code window for the btnGo_Click event

If you terminated the execution of your application properly, you should see the source
code window with the btnGo_Click event template. When you double-clicked the button
control, you signaled Visual Studio that you wanted to wire the click action to the button
control. Typically, each control can trigger multiple events depending on which behavior
you want to intercept with your code. Each control has a default event that becomes
available to the programmer for coding by double-clicking the control on the designer
surface. In this case, Visual Studio created the Click event template so that you could
enter the following code.

Type the following code at the cursor:
myBrowser.Navigate (txtURL.Text)

Press F5 to compile and execute the application. If you named your controls correctly

in step 8 in the previous exercise and entered the line of code as shown in step 2 of this
exercise, you should now have your own Web browser application that takes you to a
Web page when you enter a URL. Of course, you won't have all the bells and whistles of
Internet Explorer, but be patient—we're getting there. Try going to your favorite URLs
to see whether your browser is working as expected. For instance, | went to http./www.
microsoft.com, and it worked just fine! You can see the result in Figure 4-4.

If you try to type some code and
it doesn’t work, your applica-
tion is probably still running. If
you don't close the application
and you return to Visual Basic,
you won’t be able to modify the
source code. A good way to verify
that you have closed and termi-
nated the application is to look in
the Visual Basic Express Edition
title bar. If you see the name of
your application followed by the
word (running), this means your
application is still active and you
won't be able to add code. If

you try to add code, the status
bar will report that you are in
read-only mode with the follow-
ing message: “Cannot currently
modify this text in the editor. It is
in read-only.”

(i BT . T
42’ My Own Browser

ch bo your browser

Microsoft Your potential. O

Get add-o
Internet Ex

Time-savers,
entertainment
& more

1|

. microsoft. com

MyOwnBrowser showing the Microsoft.com Web site

Putting It All Together

Before moving on, | invite you to
look at a video from the MSDN
Web site that talks about object-
oriented programming. You've
read a good introduction to

OOP both in this chapter and in
Chapter 1. To understand the con-
cept from another angle, navigate
to http://msdn2.microsoft.com/
en-us/beginner/bb308752.aspx,
and view Lesson 6, Parts 1 and 2.

You've just seen that when you drag a control to the design surface, you're actually
creating an object of that control class. When you're naming the control in the Properties
window, you're actually assigning a name to the variable you've just created—which is
exactly what you did for the three controls used in your browser. In fact, this is why you want
to give your controls meaningful names so that you can use them later programmatically.

As you now know, a great deal of activity was taking place when you dropped controls
on the designer surface. To help you understand what took place in the background, we

talked about important OOP concepts behind the line of code you added to respond to the N —

click event. comes to naming the variable
that represents controls on the
design surface. In this book, I'll
use up to three letters to describe

Now that you've run the application, here is a list of questions you may have:

[0 What happens if | put nothing in the text box and hit Enter? and identify the control type
by looking at its name, such as
B What happens if | enter an invalid URL? btn for a button control. The
variable name then becomes
B What happens if | enter anything | feel like? btnGo. | will introduce the list
when | talk about common c
. . . . trols in Chapter 5, “Using Ra
My answer to you is simply, “Try it. Try it now.” The real deal is that your Web browser Ar;pﬁi'c:ﬁo:')p::,ebp:,:'ngt
will actually behave like any other Web browser and will navigate to whatever URL is typed with Visual Basic 2008.%

in the text box. If you don't type anything, clicking the GO button will have no effect. If you

type something that isn't a URL, the browser control will come back with a Page Not Found IIIIII

or Code 404 page. Links to More

Now is your time to experiment. Remember this book’s rule: try, try, try. Play with it. Information
Change some of the properties, and see the results at run time. Although we haven't used Some good sources of informa-
many features yet, you'll add more in Chapter 6. This project is far from over! By adding new tion are the videos from MSDN
features, you'll arrive at a point where your application will start to look much more familiar. that were specifically created to

cover Visual Basic 2005 Express
Edition but that are still appli-
cable. The videos for Lessons 2
and 7 cover some of the topics
you have just learned and will
provide you with another point
of view. You can find the videos
for Lessons 2 and 7 by typing
the following hyperlink: http://
msdn2.microsoft.com/en-us/
beginner/bb308734.aspx.

rrrssy.

Chapter 4: Creating Your Own Web Browser in Less Than Five Minutes 57

In this chapter, you learned how to build a Web browser.

[l You added more than one control to the designer surface.

You set properties in the Properties window.

I You wired an event to a control and learned how to add code that will execute when the
event is triggered.

With this example, you saw many OOP concepts in action by using only one line of code.
You added the code to respond to the button click event by calling the Navigate method of
your Web browser object. Your Web browser navigated to a URL passed in as an argument
to the Navigate method. The argument for the Navigate method was passed in using the
text box control's Text property. Everything was completed and fully working just by tweak-
ing some properties and adding only one line of code! That's what | call productivity.

In the next chapter, you'll continue this process by learning more about the major
features of Visual Basic 2008 Express Edition. You'll become more productive at developing
applications by learning about features such as IntelliSense, snap lines, code snippets, Smart
Tags, the My namespace, and much more.

58

Microsoft Visual Basic 2008 Express Edition: Build a Program Now!

Using Rapid Application
Development Tools with

Visual Basic 2008

Snapping and Aligning
Controls Using Snap
Lines, 60

Using IntelliSense—Your
New Best Friend!, 62

Exploring Real-Time
Error Detection and
Correction, 68

Oh, My...My Is Great, 70

Renaming, 72

Exploring Common
Windows Controls, 75

What Happens When an
Event Is Triggered?, 78

In Chapter 4, “Creating Your Own Web Browser in Less Than Five Min-
utes,” you started building your own Web browser, and in Chapter 6, "Modi-
fying Your Web Browser,” you'll add to its capabilities. But before you do
that, I'll introduce some Microsoft Visual Basic 2008 features that will help
you develop your Windows programming knowledge and skills. In this
chapter, we'll look into some of the more useful rapid application develop-
ment (RAD) features of Visual Basic 2008 Express Edition.

You can find all the RAD features described in this chapter in every
edition of Visual Studio 2008. So if you already know how to use these
features in Express Edition and decide to explore any of the other edi-

tions of Visual Studio 2008, you'll find it much easier to switch and be
productive.

Snapping and Aligning Controls Using Snap Lines

¢ all Windows Forms ~C

et [F=R[Ech 5

[abeﬂ

Snap lines in action with two label
controls

Not being a very skilled user interface designer myself, I've always had problems working
on a program with many controls to align. Even more difficult was trying to get the align-
ment right the first time | dropped the controls onto the form. I've always had to go to the
Properties window and align the controls manually by entering their x and y coordinates,
which slows down the development process quite a bit! One of the philosophies the Visual
Basic 2008 team had in mind when creating this awesome product was to make sure you
didn't have to perform multiple steps at several different places to accomplish a simple task.
And they succeeded with a lot of important features built into the designer; one of these is
the snap lines feature with which you can easily align objects on the designer surface. Let's
do an exercise so you can see the snap lines feature in action.

TO CREATE A NEW WINDOWS FORM USING SNAP LINES

Start Visual Basic 2008 Express Edition by clicking Start, All Programs, Microsoft Visual
Basic 2008 Express Edition. Create a new Windows Forms Application project by using
any of the techniques shown in the previous chapters (using either the File menu or the
New Project icon in the toolbar). Name the new application TestProject.

You should see the designer surface. If you don't, right-click the filename Forml.vb in
Solution Explorer, and select View Designer. Then, using the Toolbox, drag three text box
controls and three label controls to the design surface.

Stack the label controls vertically. A thin blue line (a snap line) appears on either the
right side or the left side of the labels to help guide the alignment. When the labels are
aligned correctly, release the label control.

As shown in Figure 5-1, a small blue horizontal line also appears to the left of the label
control. This line represents the minimum space between a control and another control
or between a control and its container.

4. After aligning the labels vertically, do the same with the text
boxes immediately to the right of each label. The designer
surface should look like the one shown in Figure 5-2.

5. Notice that the labels are aligned with the bottoms of the text
box controls. For a cleaner appearance, the labels should align
with any text that will be entered in the text boxes. To align the
labels correctly, move each label until you see a horizontal
fuchsia line instead of a blue line, as shown in Figure 5-3. In
Figure 5-4, Labell and Label2 have been properly aligned with
the baseline of the corresponding text box contents, but
Label3 is still aligned with the bottom of the text box.

Label3
Figure 5-3
Example of alignment with the common text
baseline
W Fart = =]
Labell ..&iignec.l
Label2 Aligned
Label? LaEei niot aligneci \.:;lit-H.t.he te:n;t here
Figure 5-4

Runtime execution of an alignment prob-
lem. The bottom label is aligned with the
bottom of the text box but not its content.

Do not close the test project;
you’ll need it for the sections that
follow. If you close the test proj-
ect and Visual Basic 2008 Express
Edition and then re-open them
later, you might lose the current
view and your form, and code
might not show up automatically.
If you do happen to close the test
form, click the View Code button
on the Solution Explorer toolbar
to view the code for the selected
form, or click the View Designer
button to open the designer for
the selected form. Alternatively,
you can right-click the form file-
name, in this case Forml.vb, and
then select View Code to view the
source code or View Designer to
open the design surface.

Label

Label2

Label3

Figure 5-2
All the controls are now
aligned

Chapter 5: Using Rapid Application Development Tools with Visual Basic 2008

61

Using IntelliSense—Your New Best Friend!

As a beginner, one of the tough-
est aspects of programming to
learn is the syntax, including
knowing when you can use a par-
ticular keyword, and so on. Well,
IntelliSense in Visual Basic 2008
Express Edition really gives you a

hand. It's smart enough to bring
you only those suggestions that
you can use in the context you
are in and therefore removes a
lot of potential errors for using a
construct in the wrong place.

IntelliSense is one of the greatest tools developed for both beginner and experienced
programmers. This feature provides contextual language references within the code editor
and can even complete typing for you. This means you can get immediate code syntax help
specific to the code you're writing without leaving the code editor. For example, if you're
inside a form and you ask IntelliSense for help (you'll see how in a minute), you'll get access
to code constructs that make sense for that particular form. You've already experienced
IntelliSense while doing the previous examples without really knowing that's what you were
using. With Visual Basic 2008, the team has improved IntelliSense even more. In fact, it has
improved so much that it has a new name: IntelliSense Everywhere. IntelliSense Everywhere
improves productivity compared to Visual Basic 2005 by reducing the number of keystrokes
you have to type. Now let's see in detail what IntelliSense Everywhere is.

Using IntelliSense as You Go

In Visual Basic 2008, IntelliSense helps you as you type by adding new kinds of helper
functionality. For instance, it now contains the Visual Basic language keywords. For example,
keywords such as Dim and As and all other Visual Basic reserved keywords are now included
in IntelliSense.

Figure 5-5 shows an example from the project currently open in the code editor. As soon
as | typed Di, IntelliSense reduced the number of possibilities to one, Dim. IntelliSense was
able to detect the context in which | was working when | started typing and present the
most logical choice. Another great new feature of IntelliSense shown in this figure is that it
provides you with help on the selected keyword or type in the form of a tooltip in the IDE.

Private Sub Forml Load(ByVal sender As Systew.Chject, By

D irri Dim statement
I Declares and allocates storage space for one or more variables.
C Em Dim {<var> [As [New] dataType [(boundList)]][= initializer]}[, var2]

IntelliSense detects the most logical choice based on the context.

'y s/ 4

Along the same lines, Figure 5-6 shows how IntelliSense narrows down the number of

As you code bigger projects, it

choices based on the context and the libraries available. The figure shows that when | typed will be common for IntelliSense
the letters O IntelliS dd logical choi | had to t lv fi to hide pieces of code that

€ letters Dpen, Intelli>ense narrowe own my logical cholces. a O type only Tive you need to see. In earlier ver-
letters, OpenF, to find the OpenfFileDialog class out of hundreds of possible types in the sions of Visual Basic, the code

would be hidden underneath the
IntelliSense window, and if you
wanted to use the information,
you had to remove the window
by moving the cursor or the

libraries. This greatly helps reduce the number of keystrokes and keeps errors to a minimum.

Frivate Zub Forml Load(EyVal sender Ais ZJystem.Chje
Dim adpenFilelialog As New Qgerﬂ
End Zub

jJ mouse, then reading, and then
Class < OpenMode doing it again. Now you can
=7 OpenShare simply hold down the Ctrl key,

Common All and the IntelliSense window will

become transparent, allowing
you to see underneath.

Frivate Zub Forml Load(EyVal sender Az Zystem
Dim adpenFilelDialog As New %nﬂ
End Zub

Class R4 OpenfFileDialog |

IntelliSense narrows down the options based on the context. |
a0

L3 a0penfFileDialog |

Another nice feature is that you even get help on your own variables in IntelliSense, as
shown in Figure 5-7. As you'll see throughout this book, IntelliSense is smart and helpful but

. . A user-defined variable is
not intrusive.

available in IntelliSense.

Using IntelliSense Filtering: Removing the “Uncommon”

You might have also noticed that when the IntelliSense window appears, you have two
tabs at the bottom: Common and All. These are called sticky tabs because they reset the
default view when you click them. These tabs are also part of the feature called IntelliSense
Filtering. With IntelliSense Filtering, you can adjust the level of detail that IntelliSense sup-
plies in the code editor. When you select the Common tab, IntelliSense filters out most
uncommon and rarely used options, bringing you only the most common options based on
two factors: the most plausible choices for the context or the one used most frequently in
the application.

A neat feature in Visual Studio
tracks the changes you make

to the source code, similar to

the Track Changes feature in
Microsoft Word. In Visual Studio,
however, whenever you modify
your code, a colored line is added
to the beginning of that line.

A yellow line indicates that a
change was made but has not
been saved yet. If the line is
green, it means the change was
saved and is now part of the code
even if you exit Visual Studio. It's
a really useful feature, and if you
want to turn it on, just click Tools,
Options, and then select the
Show All Settings check box at
the bottom left of the window. In
the tree view, expand Text Editor,
select General, and then select
Track Changes.

Priwvate Zub Buttonl Clickl

He, Texth
End b : : :
Cla: ¥ Friend WithEr

¥ TextBox?
2% TextBox3

Figure 5-9
Getting help from IntelliSense by typ-
ing a period () after a valid object

Opening IntelliSense: Pressing Ctrl+Spacebar

One of the easiest ways to open the re— N

. . . [Z (Dedlarations)
IntelliSense window is to press D Public Class Forml
Ctrl+Spacebar. Figure 5-8 shows an exam- L _|
ple from the project currently open in my 1 %i;;’;“ 3
code editor. You can see in this figure a list %:Ef:‘;
of possible choices based on the context of %#End Region
= #If

a form element named Form1. = #Region

= AcceptButton

= AccessibleDescription

o o . V}[g AccessViolationException -

Opening IntelliSense: Typing a oo | "

Period or Left Parenthesis
Figure 5-8
You can invoke IntelliSense by hitting the Ctrl+Spacebar

Another way you can get help using keystroke combination.

IntelliSense is by typing a period (.) after an

element. The IntelliSense window will show up whether you are using .NET objects or your
own objects. For example, | requested the list of possible constructs involving the variable
Form1. In this example, | was looking for the variable TextBox1, which represented the first
text box on our form. By typing Me and then a period (.)—as in Me.—I received the list of
all relevant objects in this context. Then by typing t, | received the list of all relevant compo-
nents that have names beginning with that letter. | just had to scroll down to the item |
wanted: TextBoxI. Figure 5-9 illustrates these steps in the code editor. Finally, | pressed the
Tab key to insert my selection, TextBox1, in the code.

TO USE INTELLISENSE

1. From the Toolbox, drag a button control to the form.

2. Double-click the button to open the button click event handler in the code editor. Then,
where the cursor is blinking, press Ctrl+Spacebar. The IntelliSense window opens.

Type m, then e, and then a period (.).

4. Start typing textbox1. Before you finish the word, IntelliSense should open TextBox1.
Press the Tab key to insert the component.

64

Microsoft Visual Basic 2008 Express Edition: Build a Program Now!

5. Type a period (.) again, type text, and then press the Tab key or the spacebar. The code
line should look like this one:

Know that at any time yo

Me.TextBox1l.Text using IntelliSense, you ca
press the Tab key to mo
6. Now add the equal sign (=), and type the string literal “Hello, World”; in the end, the quickly through the se
. . . IntelliSense presents i
line should look like this: you're looking for is

selected.
Me.TextBox1l.Text = “Hello, World”

You can now build and execute the application by pressing F5 and verify that it works.

When you click the button you created, you should get the string “Hello, World” in TextBox1, [you drop a grotip St
which ordinarily should be the first one of the three text boxes. onto a form, Visual Basic incre-
. . . , . ments the number at the end of

You can also get additional help from IntelliSense if there’'s more than one available ———

TextBox1, TextBox2, TextBox3,

choice for your situation. Typing a left parenthesis displays a list of all possible choices. For :
and so on.

instance, when we created the console application in Chapter 3, we wrote to the console
using the Console.WriteLine method. We used this method with a string argument, but you
can do more with Console.WriteLine than just use a string as an argument. IntelliSense will T oot testetame T
indicate whether there is more than one option. For Console.WriteLine, IntelliSense indicates mud N e e
. _“1a3|value: The value to write.
there are 18 possible variations, as you can see in Figure 5-10. | was looking for the second
Figure 5-10

variation, which is a Boolean argument. Now it's your turn to try it. IntelliSense fists all the possible varia-
tions of using the WriteLine method.

TO SELECT FROM A LIST OF OPTIONS IN INTELLISENSE

1. If the source code is not visible, click the tab at the top of the code editor where you see the
filename Forml.vb. Add a new line in the ButtonI_Click event, type MessageBox.Show,
and then type (. The IntelliSense window opens and shows there are 21 possible variations
for MessageBox.Show.

Before you can use the ke
to scroll, you might need
Esc to remove the conte
IntelliSense window. It
always necessary to p
these situations, but
to do so with Messa

2. Press the Esc key, and then scroll through the list of options using the up and down
arrows on your keyboard. Display the option identified by “15 of 21."

3. Complete the following line of code so it looks like this:

MessageBox.Show(“Hello Again”)

Chapter 5: Using Rapid Application Development Tools with Visual Basic 2008 65

It is important to note that
regardless of your current sticky
tab selection, IntelliSense will

always switch in real time to pro-
vide the best match for what you
are typing.

See the “Finding

4. Build and execute the application. When you click the button, you should see the "Hello,
World" string in TextBox1, and then a dialog box should show up with the message
“Hello Again.”

Using IntelliSense Code Snippets: The Time-Saver

Code snippets are the final IntelliSense feature I'll discuss. Code snippets are reusable
pieces of code with which you can complete a wide range of tasks without typing a single
line of code. More than 200 code snippets are available in Visual Basic 2008 Express Edition.
They are categorized by function and cover a wide variety of tasks:

I Using common programming structures such as exceptions, Try-Catch blocks, and so
forth (you'll see more about these later in this chapter)

I Sending e-mail messages

Resizing a form

I Using Visual Basic language elements such as If, For, and While statements with the
correct syntax

Figure 5-11 shows a glimpse of a code snippet’s first-level menu choices. All code snip-
pets are made with customizable fields, which means they contain fields that are replaceable
with code elements from your own applications. Going forward, you will be able to down-
load additional code snippets from various sources such as the MSDN Web site, online com-
munities, and other .NET vendors. You will also be able to add your own code snippets to the
code snippets library to fulfill your needs in other projects.

Private Jub Buttonl Click{ByWVal sender Ais System.Chject,

Insert Snippet: |
End Sub

[Application - Compiling, Resources, and Settings

[d Code Patterns - If, For Each, Try Catch, Property, etc

[Data - LINQ, XML, Designer, ADO.NET

3 Fundamentals - Collections, Data Types, File System, Math
3 Other - Connectivity, Crystal Reports

3 Windows Forms Applications

3 WPF

Class

IntelliSense code snippets menus

Invoking IntelliSense Code Snippets

You can invoke code snippets in the code editor in two ways: by right-clicking and select-
ing Insert Snippets or by typing a question mark (?) in the editor and then hitting the Tab key.

TO USE CODE SNIPPETS

Using the previous test project, return to the code editor in the Buttonl_Click event, and
call up the IntelliSense code snippets menu by using either method described earlier.

On the first-level menu, double-click Code Patterns: If, For Each, Try Catch, Property, Etc.;
double-click Conditionals and Loops; and then select For...Next Statement. Look at Fig-
ure 5-12 to get a feel for which menu choices you should have on your screen. Double-
click For...Next Statement to insert the code in the code editor.

| Catch, Property, etc > Conditionals and Loaps > |

End Sub : ‘
|5l Build Only Selected Portions of the Source Code by Using #f »

|5l Do Until..Loop Statement |
|5l Do While...Loop Statement |
2 Do..Loop Until Statement |
5l Do..Loop While Statement
=l ForEach.. Next Statement
Loops through a sequence of numbers| =)
Shortcut: For = w. Else EndIf Statement

= ¥..Elself...Else...End If Statement

] F.End If Statement -

Private Sub Buttonl Click(BEyVal sender Az Iystem.Chject, |
— |

Class

—

Code snippets within the Visual Basic language menus

Once you select the For...Next Statement option, a generic template for that language
construct appears, as shown in Figure 5-13. The highlighted fields in the "before” ver-
sion (the one shown on the left of Figure 5-13) are replacement fields prepopulated with
some default values that you can modify. Before you go to the next step, edit the code to
match the “after” version (the one on the right of Figure 5-13).

For bz Integer = 1 To 10 For EI iz Integer = 1 To 10

Me.TextBoxl.Text += i.To3tring + ", "
MNext MNext

"Before” (left) and "after” (right) example of the For..Next code snippets

If you've used Visual Basic 2005
Express Edition or any other ver-
sion of Visual Studio 2005, you'll
remember that the green high-
lights in snippets stuck around
the code after you were done
with a snippet. In Visual Basic
2008 Express Edition, they go
away as soon as you start typ-

ing something else. If you want
to use the snippet functionality,
simply right-click and select Show
Snippet Highlighting, and you'll
get the green highlights for all
the snippets in that file. Note that
if you close the file, this function-
ality is not available anymore.

If you know you want to use a For loop, you can also get the same snippet simply by
entering For and then hitting the Tab key twice. You'll get the same behavior as with the
other two methods explained in this section. In fact, IntelliSense will tell you how to do it.
Refer to Figure 5-14 for an example.

e B

i |

SR - (For statement

= ForEach iS ified number of times.
| P ForeColor Note: Tab twice to insert the 'For' snippet.

% Envaimnll ot [HlTTEsTsol

Hitting the Tab key twice to get the same snippet

4. Build and execute your application by pressing F5, and then click the button on the
displayed form to execute the code snippet you've just inserted. In the second text box,
you should see the numbers 1 through 10 separated by commas. This output is the result
of the For...Next statement looping 10 times, adding the index value and a comma to the
text box with each loop. In this sample, the index is i.

Exploring Real-Time Error Detection and Correction ' '

We all learn differently and at different speeds. We also might make mistakes when we
are learning something new, especially when we write code! So, Visual Basic 2008 gives you
real-time compiler feedback and suggests corrective actions to fix mistakes. In a sense, the
Visual Basic compiler is always working in the background while you are coding. Whenever
you make a mistake, you'll see a blue squiggle under the faulty code. Or, if the code is not
necessarily wrong but there is a potential problem, you'll see a green squiggle under the
code. If you move your mouse pointer over the squiggle, a tooltip will appear to indicate why
the compiler rejected your code. In some cases, a Smart Tag will appear under the last letter
of the faulty code. The Smart Tag here looks a little different from other instances and is
represented by a small yellow line surrounded by a red box: zagj

If you move the mouse pointer, an exclamation point in a red circle will appear:

This indicates Visual Basic has found a potential fix for your problem. . sy e B ot GfnedJoender ks System.Object,

Click the down arrow next to the exclamation point, and you'll be pre- Dim foo ks In‘:

sented with one or more potential fixes for your problem. Let’s try it with Me . TextBoxl.Text = "Helln farld
MeszageBox. ShDlError Correction Options (ShiFt+AIt+FID)|

our test project.

TO USE REAL-TIME ERROR DETECTION
In the ButtonI_Click event, add the following line of code:
Dim foo as Integr

Press Enter; Visual Basic indicates there’s a problem with the word Integr by showing a
blue squiggle. Move your mouse pointer over the Smart Tag.

. Diim Foo As Intedr
When you see the exclamation point in a red circle, click the down arrow. Fon 5 ae In 1 o 10
. . , Me. TextE a o |
As you can see in Figure 5-15, you're presented with a list of potential fixes for the o TFPET TypeIntegr’is not defined.

error. Of course, the list of potential fixes is based on your current context. The error Change It

correction feature will always try to find the best solution. Select Change Integr to
Integer. -

Sub
Change 'Integr’ to 'Ulnteger'.

Change 'Integr’ to 'IntPtr'.

The blue squiggle disappears, and a green squiggle appears under the variable name List of potential fixes for the current error
foo. Again, move your mouse pointer over the word that has the squiggle. A Smart

Tag warns that the local variable foo is not used anywhere else in the application. Warn-

ings are not critical and won't stop the application from executing, so you can ignore this

warning.

You've just seen one case where the real-time error correction can intervene, but it can
intervene on many other occasions. Identifying the errors with the background compiler is
easy because it is automatic. Sometimes, the hard part is knowing what to do with errors.
The error correction feature also helps you with this by showing you more than one option
to fix the problem, as shown earlier in the integer example. Now let's look at a different
example.

TO CHOOSE FROM SEVERAL CORRECTION OPTIONS

Add the following line of code in the Buttonl_Click event code:

ReadOnly bar As Double

If you have trouble typing this line of code, press Esc after typing ReadOnly to dismiss
IntelliSense. Press Enter, and a blue squiggle appears under ReadOnly.

Move your mouse pointer over the Smart Tag. It indicates that ReadOnly is not valid on a
local variable declaration.

Click the down arrow to the right of the ResdOnly bar ks Double
| t . t V I B . t M Integer = 1 To 10
exclamation point. Visual Basic suggests a T .
. . . o S
fix and illustrates the correction by striking » | Replace 'ReadOnly’ with ‘D
out the incorrect code and inserting the o Private Sub Buttonl_Click[ByVal sender As |
. . DinResdinls bar As Double

correct code, as shown in Figure 5-16. In For i As Integer = 1 To 10

. g . = Me.TextBoxl.Text += i.Todtring + 7
this case, you want to accept the change if it i |« il 3 |
makes sense in your application. If you want [7] Expand Al Previews
to accept the change, just click the blue .
suggestion. Code autocorrection example

Oh, My...My Is Great '

So far, you've seen quite a few nice features that are part of Visual Basic 2008 Express
Edition. What you've not yet seen and explored is the enormous number of classes found
in the .NET Framework. The .NET Framework is vast, and sometimes finding good classes
and methods to solve a problem is difficult. Keeping the same productivity goal in mind,
the Visual Basic team decided they had to assemble the most common classes from the
.NET Framework in one collection. They decided to create this collection in a task-oriented
way so that programmers can use it to accomplish the most common programming tasks.
Furthermore, they decided that to provide easy access to those classes, they would create a

new namespace and wrap those common classes and methods into a new set of categorized
classes called the My namespace. Basically, the My namespace gives a programmer access
to two different areas: .NET Framework classes and parts of a project (such as the forms, the
application settings and resources, and so forth). Let's look at the list of high-level classes
found in the My namespace:

B Application

Computer

Forms

Resources

Settings

User

WebServices

Figure 5-17 is a visual representation of these high-level classes from the code editor. In
the code editor, you simply have to type the keyword My followed by a period (.) to gain
access to the My namespace.

For instance, now you can play a .wav file simply by using the following syntax:

My .Computer.Audio.Play(“c:\windows\media\Windows Startup.wav”)

Test the previous line of code in the Button1_Click event to play the Windows start-up
sound. Then build your application and execute it. It's that easy! It's intuitive and a lot easier
to code now. Before the existence of the My namespace, to get the same functionality you
would have had to use either Win32 APIs or Direct Sound from the Microsoft DirectX family
and enter many more lines of code.

For more complicated tasks such as detecting network connectivity, application events,
and so forth, you gain a lot of productivity using the My namespace. Before, you would have
had to write nearly 200 lines of raw .NET Framework code—and maybe more! Now you
simply have to find the construct in the My namespace, select it, and add the context of your
application. For easier tasks, you might not save a lot of lines of code using the My
namespace, but you certainly save time otherwise spent researching corresponding classes in
the .NET Framework.

M.

ﬁ Computer
ﬁ Forms
{} Resources
' ﬁ Settings
ﬁ User

J ﬁ WebServices

B Common All

Figure 5-17

Visual representation of
the first-level menu for
the My namespace

If you are not using the Windows
Vista or Windows XP operating
system, do a search to find a .wav

file on your hard disk, and then
enter the path as the argument to
the line of code shown earlier.

You can extend the My
namespace and classes
your own methods. T
show up in IntelliSen
“Finding Additional
section later in thi
link to an MSDN
explains in detai

Chapter 5: Using Rapid Application Development Tools with Visual Basic 2008

71

Here are just a few of the common tasks you can expect to find in the My namespace:

Displaying an application splash screen
Getting your computer name

Getting network settings

Verifying that a Web site is up and running
Reading a text file into a string

Sending something to print on the default printer

Getting application settings

Of course, the My namespace is not the answer to all problems. It's a great solution for a
number of common scenarios, but to solve some other problems, you might have to call the
different classes from the .NET Framework directly and write more lines of code.

The rename feature found in Visual Basic 2008 is quite useful. It provides you, the pro-
grammer, with an easy, automatic, and effective way of changing a symbol’s name (symbols
include variables, filenames, visual controls, and so on) everywhere the symbol is referenced
in the code. You can update the variables, controls, and any other items in your applications
to meaningful names by using the renaming symbol functionality.

Here is a list of what can be referenced as a symbol:

m Type definitions such as classes, modules, structures, enums,
delegates, and interfaces
Type members such as methods, properties, and events

| |
B Member variables of classes, modules, structures, and enums
B Local variables inside functions and properties

72 Microsoft Visual Basic 2008 Express Edition: Build a Program Now!

Why Should You Rename?

So far in the test project we've worked in, we haven't paid attention to the controls’
names because we didn't have to write much code and because the project was a quick
prototype to test new features. At this point, our controls are all named something like
Textbox1, Textbox2, Labell, and so on. That's OK for what we've been doing, but when you
develop your own applications, you'll always want to give meaningful names to your controls
and variables so that your code becomes self-documented and easier to read and maintain.

How to Use the Rename Feature

You can use the renaming feature from three different places within the IDE: in the Prop-
erties window, in the code, and in Solution Explorer.

The first place you can use the renaming feature is in the Properties window at design
time. So far in our test project, we've used the form name Form1. In the next exercise, we'll
rename Forml to TestProjectForm. The expectation is that this change gets propagated
throughout the code in the project. But just to see how the functionality works, we'll look
into all files where the Form1 symbol is used.

TO USE THE RENAME FEATURE

In Solution Explorer, click the Show All Files button.

You should see a lot of new elements showing up in the project. In the following step
we'll examine the code that Visual Basic 2008 Express Edition automatically generates

when we manipulate controls on the design surface. e .
Solution Explorer « 1 X

Expand Form1.vb. Figure 5-18 shows what you should seein | = E=z==
Solution Explorer. Right-click the file named Form1.Designer. I Tieshgnt

=4 My Project
vb, and then select View Code. :. i ——ne

Now I'll introduce you to a useful feature: search. With the
Form1.Designer.vb source code in the code editor, press
Ctrl+F, and then type Forml in the Find What text box. Before
you click the Find Next button, make sure to select Current Getting to the autogenerated
Project from the Look In list box. code for the form elements

i %] Forml.Designervb
i 9] Formi.resx

/4
Behind the Scenes

This is a good point to introduce
a new button in the Solution
Explorer toolbar. The Show All
Files button looks like this in the
toolbar: =

In Visual Basic 2008, and
especially in Express Edition, the
design philosophy has always
been productivity. Therefore, the
Solution Explorer interface is not
filled with files and settings that
most users will not need on a
daily basis. But some elements
are included in the interface for
learning purposes or for when
you are solving complex prob-
lems and might want to directly
dig into all the files associated
with your project. Some files are
generated automatically when
you perform actions in the IDE,
and in most situations it's just
fine like that; you do not need
to care about all the details all
the time. In situations where
you want more control, you can
click the Show All Files button
and go directly to the compo-
nent of your choice.

7m7.

7777
OOP Terminology

Although this book is not an OOP
book, we'll certainly use many of
those constructs in the applica-
tions that we build. | talked about
OOP in Chapter 1, “Introducing
Microsoft Visual Basic 2008
Express Edition,” and in Chapter
4, but if you want to learn more
about this paradigm, you can go
to the Start Page. If it's not visible,
Just click View, Other Windows,
and then select Start Page. On
the Start Page, click the Learn VB
hyperlink in the Getting Started
section. Locate the Programming
with Objects: Using Classes sec-
tion. Then click and read when-
ever you want to learn more
about OOP and the Visual Basic
language.

7m77

Figure 5-19 shows how the search should be configured.

Search for all occurrences of Form1 in the code

Find and Replace (=]
by clicking the Find Next button. You should see 5 Quick Find |- | A% Quick Replace ~
that the search goes through four files: Form1.vb, s
Form1.Designer.vb, Application.Designer.vb, and sl i

Look in:

Application.myapp.

ICurrent Project o

Once all instances of Form1 have been found, a e

dialog box will display a message saying that the
Eind Mext Bookrmark All

search is complete and that there are no more
occurrences left based on your search criteria.

. . . The Find and Replace dialog box
Now that all instances of Form1 have been identi-

fied, you can rename the form. To do that, select the Forml.vb [Design] tab to return to
the designer surface. Then click the title bar to select the form.

In the Properties window, be sure the form control named Form1 is selected. Modify the
(Name) property by changing Form1 to TestProjectForm. Press Enter to begin renaming.
A small hourglass appears while the renaming is in process.

Now repeat the search from steps 3 and 4, and you'll see that the only occurrence left is
a string that corresponds to the Form control’s Text property (that is, the title bar name).

You can also rename a symbol directly in the code. In Forml.vb, place the cursor any-
where in the word TextBox1 in the following line of code:

Me.TextBox1l.Text = “Hello, World”

Right-click, and select Rename; a dialog box like the one on the left of Figure 5-20
appears. Replace TextBox1 with tbMessage; the dialog box should now look like the one
on the right of Figure 5-20.

Click OK to replace all occurrences of TextBox1 with tbMessage.

A search should find only one comment and the Name property of the text box control
with the string "TextBox1"—it's that easy. Imagine how much time you would save using
the rename feature if you had 10 files with hundreds of lines of code. Not only would you
be sure to find every occurrence, but the code would be a lot easier to read.

Rename [7i=] Rename 7=]
e narne: e narne:
TextBoxl thhdessage
Location: Location:
TestProjectForm TestProjectForm
Ok Cancel Ok l I Cancel

Rename dialog boxes: before (left) and after (right) a rename

The third way to rename a symbol, and in this case only for project elements, is to do

it directly in Solution Explorer. Even though earlier we changed the Form1 variable into
something more meaningful, the filename Form1 hasn't changed because it's not in the
source code; it's in Solution Explorer and contained in the project, so it's still Form1.vb.
For consistency, right-click the filename Form1.vb in Solution Explorer, select Rename,
and then change the filename to TestProjectFormOtherName.vb. Two things will happen:
first, you'll see that the filename and all dependent filenames are automatically changed
to the new name; and second, you'll see that all references to TestProjectForm are now
changed to TestProjectFormOtherName. You can verify this renaming change by pressing
Ctrl+F and performing a search on the old name (Forml.vb).

Exploring Common Windows Controls

| will not spend a lot of time here explaining all the details and properties of each con-
trol in the Toolbox. This book is not a reference about Windows Forms programming. Other
books do a great job with that topic. However, Table 5-1 provides a quick introduction to the
common controls you will find in most Windows applications.

Visual Representation

Labell

() Grayscale 3 Colar

Common Controls

Name

Button

TextBox

Label

RadioButton

Description

The button control lets a user communi-
cate a decision or initiate an action. In your
application, a button clicked by the user
triggers an event that your code needs to
handle.

The text box is used to get user input. On
the screen it can be a single or multiline
control. It can also provide password char-
acter masking if you need this behavior in
your application. It's a good choice for user
input that is not restrictive in choices, such
as a Boolean decision (yes/no or on/off) or
a list of specific choices (like a list of coun-
try names). It's good for names, addresses,
phone numbers, URLs, and so on.

The label is usually simple text used to
describe other controls. It is generally not
an interactive control.

This control is used when multiple choices
are offered but the user can pick only one
from the list. Let’s say you have an applica-
tion and you want to provide the option
to print in grayscale or color. You could
use two radio buttons so that the user can
select the desired method.

Visual Representation = Name

[a0 CheckBox

[] CD Changer
[Metallic Paint
] &BS

|| 2 ComboBox

| v

Alabama
Arkanzas
California
Connechicut
W azhington

Joe ListBox

Common Controls

Description

A check box is great for Boolean choices
(for example, on/off, yes/no, and so on). It
can also be used in a group of check boxes
to indicate characteristics of a single entity.
For instance, in a car-ordering tool that is
part of a dealership application, you could
have check boxes for all the car character-
istics (that is, AM/FM radio, CD changer,
heated seats, metallic paint, and so on).

A combo box is a combination of a text box
and a drop-down list with valid choices. It's
great for displaying an editable text box with
a list of permitted values. You can have auto-
complete, and the values can be sorted. The
values can come from static entry or from
other sources of data such as a database. For
instance, a good example is selecting a state.
You can either enter the state name or select
it from the list of possible values.

A list box is a short list of valid choices for
the domain this component represents. This
control is great when there is a list of pos-
sible choices that is not too big in number.
It does not allow the user to enter text but
lets the user select one or more than one
choice by using Ctrl or Shift.

Visual Representation = Name Description

me | ToolTip The tooltip control is helpful for displaying
information about a control when a user

holds the mouse pointer over the control.

Cuskarner Mame

|h 971 - | NumericUpDown This control is really useful when you want
the user to select a numerical value in a
defined set of numbers. It allows the user to
select a single numerical value from the list
using the up or down button to increment
and decrement the number. It's a perfect
way to force the user to pick a numerical
value for the year component of a date.

Common Controls

Many more controls exist than those shown here, but this table should make it clear that
you have a plethora of controls available to perform many tasks. To save time and effort, you
can usually find a control to provide the results you want with very little effort. It is especially
desirable if the control you pick can restrict choices or how the data is selected without hav-
ing to perform any other validation. In software development, always keep the 80/20 rule in
mind: 80 percent of results for 20 percent effort. Keep it simple; you don't need to reinvent
the wheel.

What Happens When an Event Is Triggered? '

All Windows applications are event-driven. This means that whenever you select a menu
item, click a button, or even move from one text box to another, you are generating an
event. Blocks of code attached to each of your actions execute as you work. Events are gen-

erated not only by your actions but also by the surrounding environment, namely, Windows
or external sources. To understand what “external sources” means, think about any Instant
messenger application, for example, Windows Live Messenger. When you chat with someone
and exchange data back and forth, you are actually generating events. In nontechnical terms,
data coming from your friend over the Internet is an event.

These events exist for a multitude of actions you often take—probably without even
realizing they are events. Some events are handled for you by autogenerated code, such as
clicking the red X in the right corner of an application, and some others need to be handled
by your code.

In this section, we'll start to work on wiring source code to events. For practice, we will
wire two objects from our test project. Before beginning, use what you've learned so far to
make the test project look like Figure 5-21.

When an event is triggered, the code that is wired

i . g Customer Info |E”E”E|
to handle the event is executed. If there is no code Fle Edit Tools Help To add the menus and toolbar
N . - . buttons, go to the Toolbox in
attac.:hec.j to-a par.tlcula.r event, nothln.g happens. Our DEHS ¥ 2E the Menus & Taolbarsicatanai
application is basically in that stage right now (except and add a MenusStrip control and
. a ToolStrip control to the form.
M
for the button that was doing some work for us, as e NI ——
shown previously). We will add some functionality to our Last Name the Smart Tag menu, and select
. Insert Standard Items.
test project application by wiring the Save menu item Ernail addhess
and the toolbar Save button to source code that will i
. . _Display
save all the content of the text boxes to a simple text file
in the current directory. Because the Save and Open file
dialog boxes are standard (and also to get a consistent

feel to applications), the Visual Basic development team
decided to write save and open controls and make them
available to you. We'll take advantage of this shortcut in
our exercise.

Customer Info form

TO WIRE SOURCE CODE TO EVENTS

Drag the SaveFileDialog control in the Toolbox's Dialogs category to the form. This
control has no design-time representation; it will appear (along with the MenuStrip and

777

Using Comments in
Your Code

One good habit you should start
embracing when writing code is
to comment your code. Right now,
the code for the problems we are
solving isn’t too complicated. But
keep in mind that adding com-
ments serves the following pur-
poses: first, your code becomes
much more maintainable because
you can return six months later
and, if the comments are good,
be able to understand what you
developed. It also makes your
code more readable and facili-
tates getting help from somebody.
Write your comments in regular
English without too much jargon.
Comments are never compiled in
the application you execute, so
they will never slow down the per-
formance of your application.
Using Comments in

Your Code (continued)

7m77.

ToolStrip controls) only in the component tray, which is the gray section below the

designer surface. See Figure 5-22 for the location
of the SaveFileDialog control.

We'll use the SaveFileDialog control to wire
the click event to both the Save button on the
toolbar and the Save item in the File menu.

To have the same operation performed when
either event occurs, we'll write a block of code
called a method, and we will then call this
method in all places we need it. The block of
code will perform the same operation whether
it is triggered by the button on the toolbar or
by the menu selection.

Click the blue disk icon on the ToolStrip control
to select it. Refer to the Properties window to
be sure you have the correct control, which
should be called SaveToolStripButton, as shown
in Figure 5-23.

Ei.!operties - J;l %

1 SaveToolStripButton System.Windows.Forms.TooIS‘| -

¥ Customer Info [= ===
File Edit Tools Help
DEHS 4§28 @

Mame
Last Mame

Email address

| Diizplay

= MenuStripl == ToolStripl

Design-time representation of the SavefileDialog
control

Rl Verify that the name and type of control is

.E"“ A= the one you intend to work with.

Double-click the blue disk on the designer surface, and you will be presented with the
default event template for this control, which is the click event.

Add the following line of code to the SaveToolStripButton_Click event procedure. (I will

explain what it does in a moment.)

Me.SaveFileDialogl.ShowDialog()

logl dialog box by calling the ShowDialog() method on it. At this point, if you want to see
the effect of the change, just build and execute the application by pressing F5, and then
click the Save button to see that the Save dialog box does appear.

In every SaveFileDialog dialog box, there is a Save button and a Cancel button. The
Cancel button is automatically taken care of for us. But we need to wire what is going to
happen when the user clicks the Save button of that new dialog box.

Make sure you have stopped the execution of the application. Now, to wire the Save
button, select the saveFileDialogl icon in the component tray, and double-click it to get
to the most common event, which is the FileOk event in this case.

We'll use code snippets to insert the code that will
execute when the user clicks the Save button. Remember
that to get to the code snippets, you need to right-click
in the code editor, select Insert Snippet, and then fol-
low the different path choices. You need to write to a
file, so use the following path: Application — Compiling,
Resources, and Settings: Write to a Text File. When you

Some lines of code can get rather
long. In Visual Basic you can use
a space and an underscore (_)

to indicate that a line of code
continues on the next line. A line

of code can typically be broken
where a space occurs; however,
in some locations (such as within
a quoted string), a line cannot be
are finished, your code should look like the “SaveFileDia- broken,

logl_FileOk Method” listing shown here. Examine the
comments to understand what we are trying to accomplish.

SaveFileDialogl_FileOk Method

Private Sub SaveFileDialogl _FileOk(ByVal sender As System.Object, ByVal e As _
System.ComponentModel.CancelEventArgs) Handles SaveFileDialogl.FileOk
Try
‘ The property FileName from the first argument in WriteAllText refers
to the filename selected by the user in SaveFileDialogl
Then we are passing the content of each TextBox and concatenating the

Carriage Return-Line Feed constant

The Tast parameter indicates whether we should append to a file if it
exists. False will not, and therefore it will re-create the file each
‘ time. In order to add the content of the first box, we need to put

‘ true for the 2nd and 3rd write; otherwise, only the last write would
‘ be there if they are all false.

My .Computer.FileSystem.WriteAllText(Me.SaveFileDialogl.FileName, _

777

As you can see in the listing
in step 8, you can comment your
code by inserting a single quota-
tion mark and then typing your
comment. Your comment should
appear in green; if not, then your
line is not seen as a comment by
the compiler. Another good way
to comment your code is to use
two buttons from one of the tool-
bars. Let’s say you decide that all
the previous code in the FileOk
event is not the code you want
to execute because you want to
test something else. You do not
want to delete all the text, but
you can comment out the code
by selecting it and then clicking
the Comment Out the Selected
Lines button. And if you want
to uncomment a block of code,
you just have to select the code
you want to uncomment and
then click the Uncomment the
Selected Lines button.

This block of code
displays the SaveFileDia-

7”7

lll Me.tbMessage.Text & vbCrLf, False)

My .Computer.FileSystem.WriteAl1Text(Me.SaveFileDialogl.FileName, _

the metadata, shortcut, rep/ace- Me.TextBox2.Text & vbCrLf, True)

ment variables, and replacement My.Computer.FileSystem.WriteAl1Text(Me.SaveFileDialogl.FileName, _
assemblies. Here is the link to that Me.TextBox3.Text & vbCrLf, True)

tool: http://msdn2.microsoft.com/ Catch fileException As ApplicationException
en-us/vbasic/bb973770.aspx. The Throw fileException

videos from MSDN are another End Try

good source of information. | sug- End Sub

gest you watch the following two

lessons (even though they were Now we just need to attach the same event code to the File, Save menu selection.

made for Visual Basic 2005, they Double-click the Save choice in the File menu, and add the same code as in step 4.

still apply); they will reinforce a lot Build the application, and execute it by pressing F5. Type some text in the text boxes,

of topics covered in this chapter: and then save the content to a file by using the Save menu or the Save toolbar button.
Lesson 2 video: http://msdn2. You should verify that the content of the file your application saved is really what was on

microsoft.com/en-us/begin-
ner/bb308740.aspx

Lesson 3 video: http://msdn2.

microsoft.com/en-us/begin-

ner/bb308743.aspx

Those two lessons are a pretty
good complement to this chapter.
As an advanced topic, if you want

the form. So, to verify that it worked properly, open the file with Visual Studio by click-
ing File, Open File and then browsing to the location of the saved file. Open it to view its
contents.

You just handled two events, but | want to point out that you already handled events
previously by coding the Buttonl_Click event and modifying properties of other controls. For
instance, you modified the Text property of the text box controls when you handled the but-

to extend the My namespace, here ton click. And you were able to do that by using the control’s Name property.

is a good MSDN white paper: Finding Additional Information
http://www.msdn.microsoft With the code snippet editor you can create, edit, and debug your own code snippets. You can also fill all
.com/msdnmag/issues/
05/07/my/default.aspx

Wow, this was a big
chapter that covered a lot
of features. These features
will definitely help you write
applications on your own.
Specifically, the chapter cov-
ered IDE features such as snap

7m77.

NNy srs111711:

lines to help you to align the controls on the form. It also covered the rich features of Intel-
liSense, which help you type your code by either suggesting appropriate choices, completing
code sentences for you, or providing you with code snippets. In the end, IntelliSense is there
to reduce the amount of typing you do, to help you learn the language, and to help you
increase your productivity. On top of that, it is a great feature for beginners.

You then saw how the compiler is working in the background in real time to detect errors
and provide you with suggestions to fix them. The chapter also reviewed the introduction of
the My namespace in Visual Basic. This new namespace provides an easy way to perform a
multitude of common tasks by encapsulating a lot of lines of .NET raw code in simpler, one-
line syntax. Often, one line of code replaces up to 200 lines of raw .NET code.

You then saw the benefits of the renaming feature to replace symbol names in all project
files. It is especially useful to replace autogenerated variable names with more meaningful
variable names. You examined the most common controls you will find in every Windows
application with some graphical examples and learned when to use them. Finally, the chapter
ended with how event-based programming is performed.

In the next chapter, you'll put into practice everything you just learned in this chapter.
You'll also take a look at some new features, controls, and concepts that you'll use as we
continue with the Web browser project.

Chapter 5: Using Rapid Application Development Tools with Visual Basic 2008 83

Modifying Your
Web Browser

Opening Your
Application, 86

Interacting Through
Dialog Boxes, 93

Having a Professional
Look and Feel at Your
Fingertips, 99

Redoing the Browser, 112

After learning about the avalanche of new concepts presented in the
first few chapters, you're now ready to apply your skills and take your Web
browser to the next level. In this chapter, you'll add rich features to your
browser such as a splash screen, an About dialog box, tool strips, menu
strips, a tool strip container that will give you a rich user experience a la
Windows Internet Explorer, a status strip, a progress bar, and professional-
looking toolbars with “déja vu” icons. You'll also learn about new Microsoft
Visual Basic 2008 IDE features such as the Document Outline window. You'll
also learn to respond to events coming from the WebBrowser control. Finally,
you'll learn about Windows Presentation Foundation, because you will
modify your Web browser project using this new technology.

Opening Your Application

When you load an application, you often see something called a splash screen. Some
good examples of splash screens are the opening information boxes you see for Microsoft
Office and Visual Studio 2008. Although the splash screens are often very nice looking, they
aren't there just to display the software version and some appealing artwork or just to make
sure you're not bored. These screens serve a function. Once you've started an application,

a lot of processing is happening; for instance, the application is connecting to databases,
populating controls with data from the database, getting saved configurations for user inter-
face (Ul) preferences, and so on. Displaying the splash screen while all of this processing is
happening helps inform the user that the application is indeed working.

Technically speaking, a splash screen is a Windows form that does not allow any input
from the user. It usually has a nice presentation form with some artwork, the application
name, its version, and often some legal text. One of the first features you'll add to your Web
browser application is a splash screen.

In this chapter, you'll modify the browser application you created in Chapter 4, “Creating
Your Own Web Browser in Less Than Five Minutes.” If you installed the companion content to
the default location, you can find the application at the following location on your hard disk:
Documents\Microsoft Press\VB 2008 Express\Chapter6\. Look for a folder named Start in the
Chapter6 folder. Double-click the MyOwnBrowser.sIn solution. If you want, you can also start
from your own Chapter 4 browser project.

TO CREATE A SPLASH SCREEN

Open the Add New Item dialog box. You can do this either by clicking Project, Add Win-
dows Form or by going to Solution Explorer, right-clicking the project name (in this case,
MyOwnBrowser), selecting Add, and then selecting Windows Form. The Add New Item
dialog box appears, and you will see that a Splash Screen template already exists.

Select the Splash Screen template, and name it Splash.vb, as shown in Figure 6-1. Then
click Add.

Add Mew ltem - MyOwnBrowser
Templates:
Visual Studie installed templates
g & % U
Ahout Box Class DataSet Dialog Explorer LING to SQL Local Laogin Form MDI Parent
Farrn Classes Database Farrn
@ U & i =
kodule Service-ba.., Splash TextFile User Contral User Contral Windows
Database Screen (PFY Farm
My Templates
1
Search
Online Te...
A form preconfigured for use as a splash screen
Marne: Splashwb
add | [cancel
Figure 6-1

Adding a new Windows form: New ltem template choices

3. Go to the Design view of the splash screen, and you'll see that the screen is split into
multiple squares. In fact, the splash screen is a TableLayoutPanel control. This control
helps you by arranging the layout of your components in a table format with a set of

rows and columns. You can customize the rows and col-
umns by modifying properties in the Properties window or
by using source code. The control also features a Smart Tag
to easily add or remove rows and columns. (The splash
screen has two rows and two columns by default.) If you
look carefully, you'll see that the Splash Screen template has
another TableLayoutPanel control located in the bottom-
right cell (represented by the dotted rectangle).

MainLayoutPanel

ApplicationTitle SysternMindows.Forms.|
Copyright Systern \Windows.Forms.Label
DetailsLayoutPanel Systern.\ifindows For

s, Farms

MainLayoutPanel & i ol oo
Splash SysternMindows.Forms.Form
Yersion System Mindows.Forms.Label

Figure 6-2
Use the Properties window to find
all the controls on a selected form

Each cell in a TableLayoutPanel
control can contain only one
control, but you can always insert
another TableLayoutPanel control
as was done for the Splash Screen
template.

Often, it’s difficult to select a par-
ticular control. To see all controls
in the currently displayed form,
you first have to click anywhere
on the form, and then you can
select from the drop-down list at
the top of the Properties window.
Figure 6-2 shows the drop-down
list for the splash screen form.

To select any particular control
highlight it in the list, which
select it on the design surface

Chapter 6: Modifying Your Web Browser

87

The application title, version, and copyright information are all obtained dynamically. This
means the form will get the values from a variable or a setting somewhere in your project.
In fact, at run time those three pieces of information are obtained when the splash screen is
loaded by looking up application settings stored in the Project Designer’'s Application pane.

TO VIEW THE APPLICATION TITLE, VERSION, AND COPYRIGHT PROPERTIES

Select MyOwnBrowser in Solution Explorer, right-click, and choose Properties.

The Project Designer page opens. The Project Designer page has a series of information
tabs (as shown in Figure 6-3). You'll work mainly on the first tab for now, which is the
Application pane. You'll configure several elements on this pane. All the elements you'll
modify will affect how the application looks.

Application
Assembly name: Root namespace: -
Compile Iy O Bronnser Py Cren Bronser
Debug Application type: Icon: |
Ratarapced |W|nd0ws Forms Application v| I(Defaultlcon) v| ||
Fasaiteay Startup form: |
IForml v| |
Settings |
S | Assembly Information... | | Wiew AT Settings |
My Extensions [¥] Enable application frarmewark
Security Windows application framework properties i
Publizh [¥ Enable ¥P visual styles
[T] Make single instance application
[¥] Sawe My Settings on Shutdown
Authentication mode: vg
< 1] r

Project Designer page

2. To change the application icon, click the Icon drop-down list, and select <Browse...>. Find

the Chapter6 directory where you installed the book’s sample files and look for the
globe.ico file in the Images folder. (If you installed the companion content at the default
location, then the file should be at the following location on your hard disk: Documents\
Microsoft Press\VB 2008 Express\Chapter6\Complete\Images.)

You've changed the icon of your application assembly; in other words, you've changed
the icon of the executable binary (.exe) file itself. If you build the application and look on
your hard disk where the application is compiled (as you learned in a previous chapter,

all your projects are by default located at a path such as Documents\Visual Studio 2008\
Projects\MyOwnBrowser\MyOwnBrowser\bin\Debug or \bin\Release), you'll find that
your application, MyOwnBrowser.exe, has the globe icon that you've just selected instead
of a default icon.

Click the Assembly Information button. You should see a dialog box that looks like the
one in Figure 6-4.

Assembly Information |I||E|
Title: Py Crnery Broweser
Description: This is a WWeb Browser application done using Vis
Campany: Microsoft
Product: Py Crery Broveser
Copyright: Copyright © Patrice Pelland 2008
Trademark:
Aszembly Wersion: 1 0 0 0
File Wersion: 1 0 0 0
GLID: 300ff41-1121-4663-8057-ec130da2010b
Meutral Language: .;{None) -

[] Make assernbly COM-Visible

[Ok | ’ Cancel

Assembly Information dialog box

You're not changing the icon of
the main form when doing this
application icon change. To do

that, you need to change the

form icon’s property by assigning
a bitmap image. You’ll change
the main form icon later in this
chapter.

The assembly version informa-
tion you see here is also what
the application will display in
the splash screen you're creat-

ing. You’ll see the source code
that will display the information
on the splash screen later in the
chapter.

In the Project Designer, when

the Enable XP Visual Styles check
box is selected, your applica-

tion will inherit the look and feel
of Microsoft Windows XP. For
example, it gives you controls
with rounded corners that light
up when you hold your mouse
pointer over them. There’s also

a new colorful progress bar

and many other features you've
probably seen before. Note that
when executed on a platform
that doesn’t support Windows XP
themes, the application reverts to
the traditional Windows look and
feel (Windows 2000 or Windows
98). As mentioned, later in this
chapter we will develop the appli-
cation using WPF, and we will
then have an application with the
visual styles of the Windows Vista
operating system.

Change the Copyright text box by replacing the word Microsoft with your name, and
keep the rest of the information as it is. (If the Copyright text box is not already filled with
your information, change it to match your name or company information.)

Insert spaces between the words MyOwnBrowser in the Title text box. (This string is used
to display the application title on the splash screen.) Insert two spaces to get the follow-
ing title: My Own Browser.

Click OK to close the Assembly Information dialog box.

To attach the splash screen to your application, select Splash from the Splash Screen
drop-down list at the bottom of the Project Designer’s Application tab.

Save the application (pressing Ctrl+Shift+S saves all the files, and pressing Ctrl+S saves
the current file), and press F5 to run it.

You should see the splash screen for about two seconds before the browser form

appears. Two seconds isn't a long time, so you might not have time to really look at it. To see
what it actually looks like at run time, look at Figure 6-5. The title, version number, and copy-
right information appear automatically. But how does the information get there?

My Own Browser

Werzion 1.00

Copyright © Patrice Pelland 2008

Figure 6-5
Splash screen in action

20 Microsoft Visual Basic 2008 Express Edition: Build a Program Now!

Those three pieces of information are obtained programmatically using a familiar con-
struct—the My namespace. (By “programmatically,” | mean writing code to set or get some-
thing you would ordinarily set or get using a Ul tool, such as the Properties window or the
Project Designer.) One important part of the Splash Screen template is the Form Load event;
each form has a Load event that happens just before the form is displayed. This is where
you'll usually perform the initialization for controls on your form. Review the Splash_Load
method (in Splash.vb), specifically the following highlighted code, to understand where and
how the My classes and methods are used to populate the fields on the splash screen:

Private Sub splash_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
Handles Me.Load
‘Set up the dialog text at runtime according to the application’s assembly
‘information.

‘TODO: Customize the application’s assembly information in the
‘Application pane of the project properties dialog (under the Project menu).

‘Application title
If My.Application.Info.Title <> “” Then
ApplicationTitle.Text = My.Application.Info.Title
Else
‘If the application title is missing, use the application name, without
‘ the extension
ApplicationTitle.Text = System.IO.Path.GetFileNameWithoutExtension(_
My.AppTlication.Info.AssemblyName)
End If

‘Format the version information using the text set into the Version

‘design time as the formatting string. This allows for effective
‘localization if desired. Build and revision information could be included
‘by using the following code and changing the Version control’s design-time
‘text to “Version {0}.{1:00}.{2}.{3}” or something similar.

‘See String.Format() in Help for more information.

Version.Text = System.String.Format(Version.Text, _

My.Application.Info.Version.Major, My.Application.Info.Version.Minor

My.Application.Info.Version.Build, My.Application.Info.Version.Revision)

You can change the bitmap
image on the splash screen to
whatever you want by modify-
ing the MainLayoutPanel -
Backgroundimage property in
the Properties window. You can

also change the size of the splash
screen to fit the size of your
image or use imaging software to
change the size of the image to
fit the splash screen.

Version.Text = System.String.Format(Version.Text, _
My.Application.Info.Version.Major, _
My.Application.Info.Version.Minor)

‘Copyright info
Copyright.Text = My.Application.Info.Copyright
End Sub

As you can see, My.Application.info was useful for obtaining application settings without
reading those settings from a special file. That's the magic of the My namespace.

You might think the time the splash screen is displayed on the screen is too short. For
example, a bigger application might need to open connections to databases, retrieve
information, and do all kinds of initialization upon launching, so it might take more than
two seconds. Or, you might simply want your users to have more time to look at the screen.
There's an easy way to change the amount of time it displays. You simply have to call the My
namespace to the rescue! To add the line of code that will change the delay, you need to
open a method from the splash screen form and class:

1. Right-click Splash.vb, and select View Code.

2. Click the drop-down list on the right side of the window, and select the New method.
Look at Figure 6-6 to see where you can access the list of methods for that class.

“1; Splash v % New A
W £ ".ijsj {Declarations)
' Version.Text = Syz W
< ¥ Finalize()
Version.Text = System.S "0

3% Initia
'Copyright info
Copyright.Text = My.Application.Info.Copyright

B End Sub

List of methods for the Splash class

3. Just insert the two bold lines in the following code. The delay is expressed in milliseconds
and in this case will display your splash screen for three and a half seconds.
Public Sub New()

* This call will change the display time for the splash screen
My.Application.MinimumSplashScreenDisplayTime = 3500

‘ This call is required by the Windows Form Designer.
InitializeComponent()

¢ Add any initialization after the InitializeComponent() call.

End Sub

Interacting Through Dialog Boxes

The dialog boxes you create help the user interact with the software. They are additional
forms that you add to your application. In the following sections, you'll add two dialog boxes
to your Web browser: an About dialog box and a Navigate dialog box.

Adding an About Dialog Box

The first dialog box you'll add is an About dialog box, which exists in most Windows
applications. This dialog box contains essentially the same information as the splash screen
but sometimes contains more legal, system, and version information.

Before you add this About dialog box, you'll give Form1 a more meaningful name.
(Keep in mind that everything in your application needs to be meaningful for readability
and maintenance.) You'll also prepare the application for a transformation into a more
feature-rich Internet browser.

I'm sure you've seen the for
ting in the Properties windo
the version number. This sp
notation is how strings are
matted. To really underst
| recommend you press
search the software do
tion for String.Forma
all possible formatti
and how to use then

When a procedure directive tells
you to add a control and then
name it XYZ, it means you need
to add the control to the design

surface, go to the Properties win-
dow, and then change the (Name)
property of the control to XYZ.

Chapter 6: Modifying Your Web Browser

93

TO ADD AN ABOUT DIALOG BOX

In Solution Explorer, rename Forml.vb to Browser.vb.

On the Browser form, delete the txtURL and btnGo controls. Delete the btnGo_Click event
handler by removing its signature and content from the Browser.vb file.

On the Browser form, select the WebBrowser control, and using the Smart Tag, select
Dock in Parent Container.

As you did for the splash screen, add a new item to your project, but this time when pre-
sented with the templates, choose the About Box template. Then name it AboutBox.vb.

Similar to the splash screen, the About dialog box will be populated with information
from the project settings in the Project Designer window. At this point, if you run the
application, there is no link between your About dialog box and the rest of your browser,
so it won't show up anywhere. Usually, the About dialog box shows up when you request
it from the Help menu, so you'll add this missing link now.

TO LINK THE ABOUT BOX TO THE HELP MENU

Select the Browser.vb [Design]* tab to return to the Browser form’s Design view. Drag a
MenuStrip control from the Toolbox to the design surface to add it to the Browser form.
Name it msBrowser.

To add the Help menu, select the menu strip on the form, click the Smart Tag, and then
select Insert Standard Items. You'll get a familiar Windows application menu strip and its
menu choices with their submenus, icons, and keyboard shortcuts.

Delete all menu choices except the Help menu and the About command in the Help
menu. To perform this cleanup, select any menu choice, right-click to open the context
menu, and select Delete to remove it. Also remove the menu separators (that is, the lines
separating menu choices).

To wire the new About form to the About... menu choice, double-click the About... menu
choice to get to the AboutToolStripMenultem_Click event handler.

5. Add the following line of code to the event handler:

AboutBox.ShowDialog()

6. Save the application, and then run it. Select Help, About.... The screen should resemble
Figure 6-7. The ShowDialog() method opens the form in the middle of the executing
application, and nothing else can happen until you click one of its buttons or the red X to
close the dialog box. In this case, it has only the OK button.

@ hy Own Browser [= e
Mavigate Help

[[# & 2 search

Address: e
About My Own Browser

o

by Dwn Browser
Wersion 1.0.0.0
Copyright € Patrice Pelland 2008

Microsoft

Thiz iz a ‘Web Browser application done uzing -
Wizual Basic 2008 Express. Thiz iz great!

-

About My Own Browser dialog box showing up in your newly refined browser application

You're probably wondering why the application worked when you clicked the OK but-
ton even though you didn't write any code to handle this event. This is an example of the
productivity gains you'll get when using templates. The template includes the code to
handle the button Click event. Review the source code for the dialog box by right-clicking
the AboutBox.vb file in Solution Explorer and selecting View Code. Again, as covered earlier,

| modified the Assembly
Information fields in the Project
Designer to come up with the
information displayed in the

About dialog box. You can do the
same. You simply add or modify
the content in the Description,
Company, Product, and Copyright
fields.

As you saw if you watched the
object-oriented tutorial movie at
MSDN (go to http://msdn2.
microsoft.com/en-us/beginner/
bb308752.aspx and look at
Lesson 6, Parts 1 and 2), Me
means the current instance of

an object. In this case, this is an
instance of the AboutBox class.
Me is used to access all the public
fields, properties, and meth-

ods defined in the class. In this
example, Me is allowing you to
assign some content to fields that
belong to the AboutBox class,
which are also the fields from the
AboutBox form. Remember that
everything in .NET is an object—
fields in a form are members of

a class, and a form instance is an

A dialog box is often a modal
form. It has a predefined behav-
ior in which the user can't click
anything other than controls on
that form: the OK and Cancel but-
tons or the red X button to close
the form. This means that until
the dialog box is closed, the user
won’t be able to click anything
else in the application. To under-
stand what’s happening here, just
think about the Print dialog box
in Microsoft Word: once it is dis-
played, you can't return to your
document to make any changes
while the Print dialog box is
open. That’s because the Print
dialog box is a modal form.

using My.Application.Info gives you quick access to application information in the Project
Designer. Also note that the Click event has a single line of code that tells the form to call the
Close() method.

Now that you've added the About dialog box, it should be easy to add another that will
allow your users to navigate to Web pages.

Adding a Navigate Dialog Box

Deleting the button and the address controls from our simple browser removed the
ability to navigate to a Web page. This, of course, is not useful for a Web browser. Now you'll
add a dialog box that will give your user another way to navigate to Web pages.

1. Asyou did for the About dialog box and the splash screen, add another new item to your
project. Using the templates, select a Dialog template, and name it Navigate.vb.

2. Add a label and a text box to the dialog box:

a. Name the label IblinfoUrl. Set the Text property to Type an Internet address and My
Own Browser will open it for you.

b. Name the text box txtUrl, set the AutoCompleteMode property to SuggestAppend,
and set the AutoCompleteSource property to AllUrl.

3. Size and position the controls and the form so that the Navigate form looks like the one
in Figure 6-8.

Type an Intemet address and My Own Browser will open it for you,

Figure 6-8
Navigate form

96

Microsoft Visual Basic 2008 Express Edition: Build a Program Now!

You've set some of the autocomplete properties of the text box to behave the same way
they do in Windows Internet Explorer. This means the text box will suggest and append URLs
based on the letters the user types. You'll now wire this form to the application using a new
menu called Navigate.

TO WIRE THE FORM TO THE APPLICATION USING THE NAVIGATE MENU

Return to the Browser form in Design view, and look at the top of the Browser form. You
already have a menu strip with the Help menu; now add a new menu to your menu strip
by clicking beside the Help menu and typing &Navigate. The & in front of the N will cre-
ate an underscored N so that the user can press the keystroke combination Alt+N to fire
the Click event on the Navigate menu.

You'll see that the Navigate menu shows up to the right of the Help menu. To move a
menu, simply select it, and drag it where you want. In this case, drop it to the left of the
Help menu.

Before adding the code for the event itself, you need to add an important line of code.
Remember that in Visual Basic everything is an object, and if you want to manipulate
another form and exchange data between the two forms, you first need to create an
object of that type that is visible to your main form (the Browser form)—in this case,

an object of type Navigate. Create an instance of the Navigate form outside the source
code of any event handler by writing the following line of code in Browser.vb:

Dim NavigateWindow As New Navigate()
Look at Figure 6-9 to see where to insert it.

[F Fukhlice Class Browser

' Creating an instance of the Navigate Class (Form)
Dim WavigateWindow As New Navigate ()

Creating a new instance of the form Navigate

It’s important for you to start
learning how to test your own
code by doing what’s known as
black box testing. At a high level,
this consists of testing what the
user can do and what is presented
to the user. This means you need
to test every little detail in the

Ul as well as the situations the Ul
offers to the user. When you per-
form a task such as this, | suggest
you create a spreadsheet that
contains a matrix of all the test
cases. Then fill it in as you test.
This will give you a visual repre-
sentation of all tests and features.
You're now doing this manually
because your application is small
in scope, but you'll quickly real-
ize that with a bigger application
or an application you might sell,
you’ll need some sort of auto-
mated mechanism to make sure
the tests are all executed and that
you're not forgetting any. You'll
then require a Ul testing tool, and
in most situations you’ll need to
build your own tools. But that's
out of context for this book; I just
wanted to emphasize the impor-
tance of testing your application.

Now that you have an instance of the Navigate form class, you can write code to
exchange data back and forth between the two forms. And that's exactly what will
happen. When the Navigate form is displayed and the user clicks the OK button with a
URL in the text box, the WebBrowser control will navigate to the specified URL. Also note
that the URL text box will be cleared after navigating to the URL to make sure it's empty
the next time the user accesses it.

On the Browser form, double-click the Navigate menu to add the NavigateToolStrip-
Menultem_Click event handler.

Add the following code to the NavigateToolStripMenultem_Click event handler:

If (NavigateWindow.ShowDialog() = Windows.Forms.DialogResult.0K) Then
Me.myBrowser.Navigate(NavigateWindow. txtUrl.Text)

End If

NavigateWindow.txtUrl.Text =

Build and execute the application by pressing F5. The form should resemble Figure 6-10
when the user selects the Navigate menu and enters a URL.

S hl'lpc:ﬂf'wlll';l'w'.miclurs(:if'l.c(:.'-.n'm:f'dclt\lwnk:lads\ul"details.aspm(?Fam'.f_E

E_E%_":l_;; http://www.microsoft.com/d loads/thanky =K.rwi‘fang | ﬂ = Eg {

Browser.vb& http://www.microsoft.com/en/us/default.aspx F X |Solution

.| nttp//www.microsoft.com/learning/support/default. mspx

Irowser . [
http:/fwww.microsoft.com/MSPress/books/12202.aspx

Il http://www.microsoft.com/mspress/books/12282.aspx
http:/fwww.microsoft.com/M5Press/books/8736.aspx
http://www.microsoft.com/M5Press/books/8736.aspx#Col
http://www.microsoft.com/M5Press/books/authors/authl)
http://www.microsoft.com/M5Press/books/authors/authg|
http://www.microsoft.com/mspress/companion/0-7356-2]
http://www.microsoft.com/technet/sysinternals/utilities/p|
http://www.microsoft.com/windows/ie/ieb/previous/we
http://www.microsofthealth.com/
VA, PRICEES

Figure 6-10

Execution of My Own Browser using the Navigate form with auto-

complete

98

Microsoft Visual Basic 2008 Express Edition: Build a Program Now!

Now, test the application with all the modifications you've made. Verify every new
aspect:

Does pressing Alt+N take you to the Navigate form?

Can you hit Cancel with/without content?

Can you navigate to a good URL/bad URL?

Is the text box empty when you return to the Navigate form (that is, after you've per-
formed all the other steps and pressed Alt+N)?

Having a Professional Look and Feel at Your Fingertips

In the following sections, you'll continue to add functionality to your browser using com-
ponents that you might have seen in other Microsoft applications. You'll add appealing and
professional touches to your application quickly and easily.

Adding a Tool Strip Container and Some Tools

A tool strip container is a new control that ships with Visual Basic 2008, and with it your
users can customize your application like they customize the toolbars in Microsoft Office
Outlook or Microsoft Office Word. The tool strip container has five panels, one on each side
of the screen, and a content panel in the middle. You can have all of them on the

screen enabled at one time or choose them selectively at design time. You can 2 |l mail «
also control them with source code. You can put a tool strip and a menu stripina ' 7| 2 || Favorite Folders s
. = L |Inbox (5
tool strip container at design time, and at run time your users have the opportu- Al o - g
. = [I=] Sent Items
nity to arr.ang.e their workspace the way they like. The too-l strip contalner.glves T | P =
your application the same look and feel as Outlook (see Figure 6-11). For instance, E) All Mail ems =

| was able to put two tool strips on the left of my screen. This means those tool
strips are embedded in the tool strip container’s left panel. But | could easily Tool strip container example in Outlook

move any visible toolbar back to the top, the right, or the bottom. With a tool strip container,
you give your users control of the layout of their tool strips and menu strips, which is a great
feature to have.

TO ADD A TOOL STRIP CONTAINER

Drag a tool strip container onto the Browser form’s design surface.
Rename toolstripcontainerl to mainFormToolStripContainer.

The z-order is the control’s posi= Use the Smart Tag from the tool strip container to select Dock Fill in Form.
tion relative to the other win-

dows or controls on the screen;

think of it as the third dimension Wait a minute..where is the WebBrowser control? Don't worry, it didn’t disappear. The
2::;";‘:3;’; top of orESiEY control’s z-order has changed. The WebBrowser control is visually under the tool strip
container, and its parent is not the tool strip container but the Browser form.
The Document Outline window is a valuable tool that can help you solve this problem
and save you a lot of time. For those of you familiar with previous
ocument Outine -5 CEx versions of Visual Studio, this view existed before but only for HTML
Bl =% ¢ ¢ o and ASPX documents. With Visual Studio 2008, it has been extended
i — — to Windows Forms applications. To display the Document Outline
I} m ainFor m ToolStripContainer ToolStripC
mainFormToolStripContainer.ContentPanel ToolStripContentPanel window in your IDE, Slmply click VleW, Other WlndOWS, Document
mainFor mToolStripContainer.LeftToolStripPanel ToolStripPanel . . .
mainFor m ToolStripContainer.RightToolStripPanel ToolStripPanel OUtIIne' or press Ctr|+A|t+T ThlS view Iets yOU manage a” the contr0|s
mainFormToolStripContainer.TopToolStripPanel ToolStripPanel on your form. It shows how the controls are arranged on the screen
mainForm ToolStripContainer.Bottom ToolStripPanel ToolStripPanel . . .
myBrowser WebBrowser and which controls belong to another control. For instance, right now
msBrowser Menustrip H H B
T you cannot see the WebBrowser control, but if you display the Docu
HelpToolStripMenultem ToolStriphenultem ment Outline window, you'll see that the WebBrowser control is at the
=] AboutToolStripMenultem ToolStriphenultern . . .
same level as the newly added tool strip container (see Figure 6-12). To
rearrange the order and change how the controls are displayed, follow

the next two steps.

The Document Outline window for the My Own Browser project

TO REARRANGE THE ORDER OF CONTROLS

In the Document Outline window, select the WebBrowser control called
myBrowser, and drag it just below the tool strip container content panel called

mainFormToolStripContainer.ContentPanel. (When you drag the WebBrowser control, a
black line indicates where the control will be dropped if you release the mouse button.)

Now display the form again. The WebBrowser control is in the middle of the form. But
as you can see, the MenusStrip control is not in the tool strip container. Repeat step 1 for
the MenuStrip control, but instead of dropping it in the content panel, drop it in the top
panel of the tool strip container (mainFormToolStripContainer.TopToolStripPanel).

Now the only thing missing from the new menu strip is a dotted grip like the one shown

earlier in Figure 6-11. Without this grip, a user is unable to select the menu strip at all; it is
fixed in the top panel.

TO ADD A DOTTED GRIP TO THE MENU STRIP

1.

In the Document Outline window, select the menu strip called msBrowser, go to the
Properties window, and set the GripStyle property to Visible.

Run the application by pressing F5. Move the menu strip from one panel to the other.
You now have an application as cool as Outlook.

Adding a Status Bar to Your Browser

Your application is becoming rich in features, but to get it closer to most Windows appli-

cations, you need a status bar to report information about what's going on at any moment

during the execution. To accomplish this in your browser, you'll add a StatusStrip control, and

within this status strip, you'll add a progress bar.

TO ADD A STATUSSTRIP CONTROL AND A PROGRESS BAR

1.

On the form Browser.vb, click the bottom panel handle to expand it. (Note that the

glyph arrow direction reverses when you click it.) The tool strip container’s bottom panel

appears as a blue strip.

Drag a StatusStrip control to the tool strip container’s bottom panel. After you drop it
onto the bottom panel, it should expand to cover the whole panel surface.

If your application design
demands it and if you want to
constrain the user in any way, you
can also hide panels and prevent
users from docking any tool strip
or menu strip in a panel. Let’s
use the current application as an
example. If you want to do this,
select the tool strip container
control named mainFormTool-
StripContainer. You can select it
from either the Properties win-
dow or the Document Outline
window. Then modify the visi
property of the panel you w.

to hide. For instance, if you

like to hide the bottom pa

the BottomToolStripPanel
property to false.

Chapter 6: Modifying Your Web Browser

101

Rename the StatusStrip control from StatusStripl to sscBrowser.

Change the RenderMode property of the StatusStrip control to Professional. This will allow
the application to present a status bar to the user using the operating system colors. For
instance, if the themes in Windows XP are blue, then the status bar will be blue as well.

Add a label control to the status strip by clicking the down arrow of the Status Strip Add
control button and then selecting StatusLabel.

Rename the control from ToolStripStatusLabell to IblApplicationStatus.
Add a progress bar to your status strip just as you did for the label control.

Rename the control from ToolStripProgressBarl to pbStatus.

When the status strip and the progress bar are displayed to the user, they usually bring
important information about the events that are occurring during execution. Think of it like
a letter arriving at your house. You hear the mail truck and realize the mail has arrived. This
is the event that is raised. You open your mailbox and the envelope to learn that it's your
credit card bill. The bill is one of the pieces of information that comes along with the event.
To analogously populate the controls in the status strip, you'll have to configure your appli-
cation to extract this information from all controls (that is, the envelope) when events are
happening (that is, the mail truck arriving). And you'll do that programmatically by writing
code in event handlers.

TO POPULATE CONTROLS WITH INFORMATION

On the design surface, select the My Own Browser form by clicking its title bar. Look in
the Properties window to make sure the Browser form is selected, and click the Events
button (yellow lightning) in the Properties window. Find the Load event, and double-click
it to open the default event handler: Browser_Load. (The form Load event is raised just
before the form is displayed to the user, so, it's a good place to change properties that
affect the visual aspects of a form.)

Add the following code to the event (Browser_Load) to modify the status message label
(IblApplicationStatus) in the status strip:

Me.TbTApplicationStatus.Text = “Ready”

You'll now attach some code to the progress bar and modify the label on the status strip
to indicate to where the user is navigating. When the page is fully downloaded to the
client PC, you'll reset the label content in the status strip to the word Ready. You'll also
modify the browser title to include the URL to where the user navigated. Whenever the
OK button is clicked in the Navigate form, the WebBrowser control named myBrowser
raises the Navigating event. That's where you'll start writing code.

Select the myBrowser control, and then go to the Events list in the Properties window.
Double-click the Navigating event, and enter the following code:

‘ Modifying the Tabel in the status strip with the URL entered by the user
Me.lbTAppTlicationStatus.Text = “Waiting for: “ + e.Ur1.Host.ToString(Q)

Once the user enters a URL and the document is being downloaded, the progress bar will
need to update. Periodically, the WebBrowser control raises the ProgressChanged event.
That's where you'll update the progress bar in the status strip.

Make sure you have the myBrowser control selected in the Properties window, and then
go to the Event list. Double-click the ProgressChanged event. Enter the following code
(look at the comments to understand the source code):

The CurrentProgress variable from the raised event

gives you the current number of bytes already downloaded
‘ while the MaximumProgress is the total number of bytes
‘ to be downloaded
If e.CurrentProgress < e.MaximumProgress Then
‘ Check if the current progress in the progress bar
is >= to the maximum if yes reset it with the min
If pbStatus.Value >= pbStatus.Maximum Then
pbStatus.Value = pbStatus.Minimum
Else
‘ Just increase the progress bar
pbStatus.PerformStep()
End If
Else
‘ When the document is fully downloaded
‘ reset the progress bar to the min (0)
pbStatus.Value = pbStatus.Minimum
End If

When the user's document is fully downloaded, the browser will raise the DocumentCom-
pleted event. When this event is raised, the application title needs to be updated to the
current URL, and the application status label in the status strip will need to change to the
Ready state.

In the myBrowser event list, double-click the DocumentCompleted event. Then add the
following code to it:

‘ The validation below 1is necessary because of asynchronous calls the
‘ browser is making. We need to make sure it’s really done rendering
‘ the page.
If ((Not (myBrowser.IsBusy)) And (myBrowser.ReadyState = _
WebBrowserReadyState.Complete)) Then
‘Get Application title using the My namespace
If My.Application.Info.Title <> ““ Then
Me.Text = My.Application.Info.Title + “ - “ + e.Url.Host.ToString()
Else
‘If the application title is missing,
‘use the application name, without the extension
Me.Text = System.IO.Path.GetFileNameWithoutExtension(_

My.Application.Info.AssemblyName) + “ - “ + e.Url1.Host.ToString()
End If
Me.lbTApplicationStatus.Text = “Ready”
End If

As you can see, this source code is similar to what you used for the About dialog box and
the splash screen. It uses the My namespace classes and methods.

Save all the files, and run the application now. You should have a working progress bar,
and all the new information should be displayed, meaning the modified title window and
status strip label.

Personalizing Your Application with Windows Icons

In this section, you'll continue to personalize your browser by adding some icons
that come from known Microsoft applications. After this section, you'll have a working
Internet browser with most navigational features fully implemented—maybe not with all the

functionality of Internet Explorer, but you should be proud of yourself. Look at Figure 6-13 to
see what you will have accomplished after this section.

i B
@ My Own Browser - www.microsoft.com ===

- Mavigate Help

@O B @A P |

o Address: wae.microsoft.com Go

Microsoft

stopping hackers. easy. TR THAL
downloading the free trial. easier.

click here
4 1n] [

Ready | B

Figure 6-13
Your browser after completing this section

As you can see, you'll implement a nice list of features in this section. Here's what you're
going to accomplish:
[Link all buttons to browser functionalities
[Manage the Go button and the Enter key on the Address text box in the tool strip

[l Change the Browser form icon to the same globe icon you've set for the application icon
on the hard disk

Chapter 6: Modifying Your Web Browser 105

First you'll add two new tool strips and all their buttons. You'll also add the code to
handle all those new buttons. Each time you add a button, rename it before writing the
event-handling code. You should do this to make sure you have the correct variable names,
which is just a matter of consistency and good practice.

TO ADD TOOL STRIPS AND BUTTONS TO YOUR BROWSER

Start by adding two new tool strips to the Browser form right below the menu strip.
Name the first one tslcons and the other one tsNavigation. Use the Document Outline
window to make sure they are under the top panel of the tool strip container that is
mainFormToolStripContainer.TopToolStripPanel.

Select the tsicons tool strip. Then, using the Add Tool Strip Item drop-down list, add
six buttons, and name them tsbBack, tsbForward, tsbStop, tsbRefresh, tsbHome, and
tsbSearch.

To modify the image for each button, change the Image property of the ToolStripButton
control by clicking the ellipsis button (...) to browse on your hard disk for the icon. Or you
can right-click the icon in the tool strip and select Set Image. You'll then have the same
dialog box to import the image files from your hard disk. The images for these buttons
are all located in the Images folder under Chapter6 where you installed your companion
content.

For the tsbSearch button, right-click the button, select Display Style, and set it to
ImageAndText.

Modify the Text property of the tsbSearch button to Search. Remember to change all
your other controls to meaningful names as well.

For each button, add the respective functionality. (You'll see how easy it is to add the
desired functionality because the WebBrowser control was well designed by providing
methods for the most important functionalities.) Double-click one button after the other,
and you'll get to the Click event for each one. In each Click event, add the code shown for
the buttons in Table 6-1.

Button Name Event Code

tsbBack myBrowser.GoBack()
tsbForward myBrowser.GoForward()
tsbStop myBrowser.Stop()
tsbRefresh myBrowser.Refresh()
tsbHome myBrowser.GoHome()
tsbSearch myBrowser.GoSearch()

Button Code

Run the application, and determine whether the buttons are working. Everything should
be working except for the navigation buttons.

You'll now modify the behavior of the two navigation buttons in the tsbicons tool strip to
make sure they're enabled only when they should be—that is, when there are pages in the
browser’s history. When you start the application, the buttons should be turned off. The best
place to put this code is the Load event of the Browser form. It's a good place because the
event will happen right before the user actually sees the form. Next, you need to think about
where you should put the code that will enable and disable the two navigation buttons. The
ideal place for the validation code is where the navigation occurs because you know at that
moment the browser will navigate to a new URL.

TO MODIFY THE BEHAVIOR OF NAVIGATION BUTTONS

In Browservb, modify Browser_Load and myBrowser_Navigating to look like the following:

Private Sub Browser_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.lLoad
‘ Disabling both navigation buttons in the Icons tool strip
Me.tsbBack.Enabled = False
Me.tsbForward.Enabled = False
Me.TbTlApplicationStatus.Text = “Ready”

End Sub

Private Sub myBrowser_Navigating(ByVal sender As System.Object, ByVal e As System.Windows.
Forms.WebBrowserNavigatingEventArgs) Handles myBrowser.Navigating
‘ Add the code to enable or disable whenever there are URLs
‘ in the browsing session’s history
If myBrowser.CanGoBack Then
tsbBack.Enabled = True
Else
tsbBack.Enabled = False
End If

If myBrowser.CanGoForward Then
tsbForward.Enabled = True
Else
tsbForward.Enabled = False
End If

‘ Modifying the Tabel in the status strip with the URL entered by the user
Me.Tb1ApplicationStatus.Text = “Waiting for: “ + e.Url.Host.ToString()
End Sub

Run the application to determine whether the buttons behave correctly now.

Next, you'll add the names and controls to the tsNavigation tool strip as you did for the
previous tool strip. However, this time instead of just adding some tool strip buttons, you'll
add different types of controls.

For instance, you'll modify the browser to navigate to the URL specified in the text box
when the user presses Enter. You'll also modify the behavior of clicking the Go button to
make sure it does the same thing.

TO ADD NEW CONTROLS TO THE TSNAVIGATION TOOL STRIP

Use the Add Tool Strip Item drop-down list on the tsNavigation tool strip, and add
the following controls to the tool strip: label, text box, and button. Name the controls
tsIblAddress, tstbUrl, and tsbGo.

Use Table 6-2 to set the properties of the controls.

Control Name Type Properties Value

tsIblAddress ToolStripLabel Text Address:
tstbUrl ToolStripTextBox Size:Width 350

tsbGo ToolStripButton Text Go

tsbGo ToolStripButton DisplayStyle ImageAndText
tsbGo ToolStripButton Image Go.bmp

Navigation ToolStrip Controls and Properties

The tsNavigation tool strip is not a dialog box with an OK button or a Cancel button, so
you cannot use the AcceptButton or CancelButton property. Therefore, you need to capture
another event that will be triggered whenever the user presses Enter.

The KeyUp event is triggered whenever the user releases a key. For instance, whenever
the user types a letter, he presses the key of the desired letter. When he releases the key, the
KeyUp event is triggered. The code you'll add in the next exercise will determine whether the
key the user just released was the Enter key. If it was, a new method called NavigateToUr! will
accept a string representing the URL as a parameter and navigate to the URL.

You'll use the same method for the Go button. When you develop an application, you
never want to duplicate two pieces of code that differ only by a literal. You always want to
reuse the source code whenever possible. The way to do that is to create methods that are
generic enough to be used by more than one component. Since the NavigateToUrl method
has only one line of code, you might be tempted to say that if it's almost the same one line
of code, why use a method? The answer is simply that in the future you might have to add
some validation. If that one line of code is repeated throughout the source code, you'll have
to update it in multiple places. However, if there is only one place where you have to modify
the code, your solution is less prone to errors and a lot less tedious.

TO CONFIGURE THE BROWSER TO NAVIGATE TO THE URL

Select the tstbUrl tool strip text box.

By the way, more than one event

is being triggered By BES=SUISEN, In the event list in the Properties window for tstbUrl, double-click the KeyUp event. The

Enter key, but the one that you’ll
trap is the KeyUp event. following is the code to determine whether the user pressed and released the Enter key

and also the method NavigateToUrl that will enable you to use the same code in more
than one place. Add this code to tstbUrl_KeyUp and add the NavigateToUrl method.

Private Sub tstbUrl_KeyUp(ByVal sender As System.Object, ByVal e As System.Windows.Forms.
KeyEventArgs) Handles tstbUr1.KeyUp
‘ e is of type KeyEventArgs and contains all the
‘ information that triggered the event. The KeyCode
‘ is one those information.
If e.KeyCode = Keys.Enter Then
Me.NavigateToUr1(tstbUrl.Text)
End If
End Sub
Private Sub NavigateToUrl(ByVal Url As String)
Me.myBrowser.Navigate(Url)
End Sub

Double-click the Go button on the tsNavigation tool strip, and add the following code to
the tsbGo_Click event procedure. (Notice that this is the NavigateToUrl method.)

Private Sub tsbGo_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
tsbGo.Click

Me.NavigateToUr1(tstbhUrl.Text)
End Sub

You can now modify another piece of code, the Navigate menu Click event. You simply
have to modify the code so that it calls the NavigateToUrl method, as shown here:

Private Sub NavigateToolStripMenuItem_Click(ByVal sender As System.Object, ByVal e As System.
EventArgs) Handles NavigateToolStripMenuItem.Cl1ick
If (NavigateWindow.ShowDialog() = Windows.Forms.DialogResult.0K) Then
Me.NavigateToUr1(NavigateWindow.txtUrl.Text)
End If
NavigateWindow.txtUrl.Text =
End Sub

o

TO MODIFY THE BROWSER FORM ICON

Finally, you'll modify the Browser form’s icon so that the user sees a globe when the
browser is running or minimized:

Select the Browser form, and then look for the Icon property in the Properties window.
If you see only events in the Properties window, click the Properties button at the top of
the Properties window. Click the ellipsis button (...) to browse for the globe.ico file in the
Chapter6 directory in the Images folder under the Chapter6 directory.

The result of your hard labor is the finished product—the My Own Browser application,
as shown in Figure 6-14.

@ My Own Browser [=EE=T]
Mavigate Help
[51 [# &) 2 search

Address: Go

Ready |

Finished product—the My Own Browser application

Redoing the Browser

There are a few differences
between WPF on Windows Vista
and WPF on earlier versions of
Windows. The following two
features are unique to Windows
Vista: 3D objects get antialiasing

only on Windows Vista or newer,
and nonrectangular or translu-

cent windows get hardware accel-

eration (from your graphic card’s
GPU) only on Windows Vista or

able from the
http://session

Now that you have enriched your browser application, it is time to refresh it and make
it look like a Windows Vista application. To do that, you'll start learning the new Windows
Presentation Foundation (WPF). You'll work on the same browser application so that you can
focus only on the new topics at hand.

Windows Presentation Foundation

What is WPF? First let's look at where it came from—if you refer to Figure 1-1 in Chapter
1, “Introducing Microsoft Visual Basic 2008 Express Edition,” you'll see that WPF was added
with the arrival of .NET 3.0 and shipped with Windows Vista. What is it? WPF is a unified pro-
gramming model that allows developers and designers to build Windows applications that
incorporate rich media (sound, video, and so on) and documents.

WPF uses your graphical processing unit (GPU) via a technology called DirectX, which is
a software platform and technology that was used mostly for games and other graphical-
intensive applications. Programming applications directly with DirectX is not easy, and WPF
uses the capabilities of DirectX without the need for you to learn them. With WPF, you have
the ability to develop richer applications by using the full power of your computer instead of
relying only on your central processing unit (CPU).

With WPF, developers and designers are able to work together to come up with high-
quality applications; you probably have seen what WPF will let you do in big Hollywood
productions such as The Net, Sneakers, Disclosure, 24, or Mission Impossible. For instance,
do you remember in Disclosure the virtual glove database with its super innovative explorer
software? Or how advanced the e-mail software was? It's always fascinating to see how
Hollywood is using software and how good it looks but at the same time how far it is from
reality. Well, it's now a reality because of WPF.

Before we dig into the technicalities, | invite you to look at the videos on the Mix07 Web
site that showcase WPF capabilities. Specifically, take a look at this nice implementation of a
kiosk-based application for a well-known company: http://sessions.visitmix.com/default.asp?
event=1016&session=2017&pid=UNI19&disc=&id=1620&year=2005&search=UNI19.

'y s/ 4

WPF and XAML

Extensible Application Markup Language (XAML), pronounced “zammel,” is a use of XML
that enables declarative programming in WPF. It is called declarative programming because,
by using XAML, the developer can define the user interface declaratively, similar to how an
XML file describes a document format. It is a programming language because you can create
.NET objects by simply using XAML. A good analogy is the new Office 2007 document for-
mat that uses XML to describe the structure and formatting of your Word 2007 documents,
for instance.

XAML enables something that was really difficult previously: designers and developers
working together on the same project. With Visual Studio and Microsoft Expression products
such as Microsoft Expression Blend, designers can work on the design and the user interface
and then pass them on to the developers so that they can write the code. The video refer-
enced previously is a good example of how these separate activities can come together.

Using XAML simply helps separate the front end, or user interface, from the back end,
or business logic. | don't want to get too deep into XAML at this point because that's not
the purpose of this book, but we'll start by looking at how XAML defines real .NET objects.
Here's how a button is declared in XAML:

<Button xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation” Name="btnGo”>Go</
Button>

If you place this code in a file called foo.xaml and then fire up Internet Explorer and
open the file, you'll see a big button that takes the entire surface, but it's a real WPF but-
ton. You don't need to compile the code, and it works. Isn't that great? This means you can
write applications that define your interface and then add events such as the Click event and
have the code in a separate Visual Basic file; however, it also means it can’t run by itself in a
browser. It would look like something this:

<Button xmIns="http://schemas.microsoft.com/winfx/2006/xaml/presentation” Name="btnGo”
Click="btnGo_cT1ick”>Go</Button>

So, you now see clearly the separation between the user interface definition and the
business logic of your application.

The goal here is to show how

TO CREATE A WPF VERSION OF THE BROWSER
you would create an application

in WPF, but Windows Forms is This is an introduction to WPF, so we won’t reimplement the whole application here;
still easier to use and the way instead I'll show parts of the Web browser application but with a reduced set of features. In

to go—unless you are willing to . . .
spend some time ISR fact, we will implement almost the same version as in Chapter 4.

concepts, learning XAML, and You'll first define the interface, and then you'll hook up the browser events so that it

working more with the code.

actually works:

1. Add a new project to your solution by clicking File, Add, New Project. Select the WPF
Application template from the Visual Studio templates, and name it MyOwnWpfBrowser.
Your screen should look like the one in Figure 6-15. Then click OK to create the project.

You should now have the new designer surface and XAML editor in a split view on your
screen. Look at Figure 6-16 for the new WPF design experience. You'll also notice that the
Properties window has changed quite a bit.

-

Add Mew Project 7=

Templates: El

Visual Studie installed templates

B @ &N

Windows Class Library WRF WRF Browser Console
Farrms Ap.., Application Application Application

My Templates

Search
Online Te..,

Windows Presentation Foundation client application (MET Frarmework 3.5)

Marne: ey ChenpfBromes er
Location: C:\Us.ers\ppeIIand\bocumen.ts.\l\.d.icrosoft Press\\u".B 2005 Express\Chapterﬁ.\St.art\.My(.)Wn.Browser -
QK] ’ Cancel l
Figure 6-15

Adding the WPF browser project to your solution

114 Microsoft Visual Basic 2008 Express Edition: Build a Program Now!

You can see that this view is
rather different. The view is split
between Design view at the top
and Code view at the bottom.

In the bottom part you see the
XAML representation of what
you see on the design surface.
It’s a real-time representation, so
if you modify either view, you'll

see the change immediately rep-
licated in the other. Figure 6-16

d b shows the horizontal view, but
} P if you click the vertical glyph on
|3 Design 4 T EXAML | — OEE the top-right corner of the XAML

B <Window : lass="Jindowl™ window, you’ll see the screen
ne="http://schewas.microsoft.com/winfx/2006/ xaml/presenta split in vertical halves instead of
1u="http://schemas.microsoft. com/ winfx/ 2006/ xaml™ horizontal ones. It's a matter of

Le="Tindowl™ Meighe="300" Wideh="300" y
<Orid> preference which one you use.

m

</orid>
</Window>
1| i r

Window Window b

Figure 6-16
The new WPF split view design surface and XAML editor

2. Next you'll change the title of this new browser window and change the Window variable
name. To do this you'll change the XAML directly. Go to the XAML editor, and change
the Title attribute of the Window element to My Own WPF Browser. As you do this, look
in Design view to see your change being applied in real time. Then change the Window
variable name by changing the Class attribute to Browser. The XAML should look like the
following at this point:

<Window x:Class="Browser”
xmIns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmIns:x="http://schemas.microsoft.com/winfx/2006/xam1”
Title="My Own WPF Browser” Height="300" Width="300">
<Grid>

</Grid>
</Window>

Chapter 6: Modifying Your Web Browser 115

The fact that all of those changes
are in sync everywhere makes it
easier to learn XAML and WPF
because you can see the changes
live. Selecting something on the
design surface will bring the

XAML editor to the correspond-

3. In Solution Explorer, rename the file Windowl.xaml to Browser.xaml, and in the
Browser.xaml.vb file change the name of the class to Browser.

4. Click the designer surface on the title, and make sure you have the Window element

selected in the Properties window. Now delete the values for Height and Width proper-
ties, and change MinHeight and MinWeight to a 640-by-480 window (width by height).

ing code. So, learning by opening
completed samples from the Web
helps you learn how to reproduce
cool things you see in samples.

You'll see that Design view will resize in real time and that the XAML code changes in real
time as well.

If you remember, | was telling you that WPF uses DirectX and the power of your graphic
card. Well, a good way to see that is to use the slider on the design surface to adjust the
scale and view a really big close-up or zoom out to see the entire window (even if it's
bigger than your monitor). This is a really neat feature that displays the great capabilities
of WPF. Look at Figure 6-17, for example:
On the left side is WPF, and on the right
side is the normal Windows form'’s title
bar but magnified. On the left side you
can see how great the title bar characters
look and how they don't have a jagged
contour. This is possible because WPF
uses DirectX and because everything is
actually drawn to your design surface.

WPF (left) vs. Windows form (right)

5. Save all the files by pressing Ctrl+Shift+S.

6. Now you'll copy the globe icon file you used in the Windows Forms project. In Solution
Explorer, right-click the globe.ico file in your Windows Forms browser project, and select
Copy. Then right-click your MyOwnWpfBrowser project name in Solution Explorer, and
select Paste.

7. You will now set some more Window properties. To do this, press Enter just before the >
in the Window element, and add the following XAML:

Icon="globe.ico” SizeToContent="WidthAndHeight”
WindowStartuplLocation="CenterScreen”

8. You have two projects in your solution, so in order to have your WPF browser execute
when you press F5, you need to make a small modification to your project. In Solution

Explorer, right-click the MyOwnWpfBrowser project name, and select Set as StartUp
Project. Your project name should now be in bold to indicate it will be the one to start

when you press F5.

This is version 1 of the WPF editor, and some inte-
gration and synchronization between Design view/
Code view and Solution Explorer are not without
bugs. Before you run the project, you need to
modify the project settings. Right-click the project
name (MyOwnWpfBrowser), and select Properties. In
the Properties window, you should see the Applica-
tion tab. Locate the Startup URI drop-down list, and
select Browser.xaml. Save all the files (by pressing
Ctrl+Shift+S).

Press F5, and you should get an empty Windows
application "WPF style.” Look at Figure 6-18 to see
what you should see.

You'll now add the two menu items on top of your
window: the Navigate and Help menus. For the purpose
of this example, we will wire only the Navigate menu.
To wire the Navigate menu to an event handler, you will
add the Click event and then the name of the method
to call when clicked. If you look in the following XAML

@ My Own WPF Browser

First view of your WPF browser application

code, you might ask what the DockPanel element is; well, it enables you to have easy dock-

ing within an element, in this case the Grid element.

Select the Browser.xaml file tab at the top of the editor, and then add the following
XAML code. Replace all the XAML including the opening and closing Grid element. When

you're done typing the code, save all the files.

<Grid Name="gridl”>
<DockPanel x:Uid="DockPanel_1">
<! Menu Bar>

<Menu x:Uid="Menu_1” Background="White” Name="_MainMenu” DockPanel.

Dock="Top”>

<! Navigate Menu>
<MenuItem x:Uid="NavigateMenu” Header="_Navigate” />

<! Help Menu>
<MenuItem x:Uid="HelpMenu” Header="_Help”’>
<MenuItem x:Uid="AboutMenu” Header="_About” />
</Menultem>
</Menu>
</DockPanel1>
</Grid>

Next build your solution by hitting Ctrl+Shift+B. To see what it looks like, execute your appli-
cation by pressing F5. You should see your two menus added to the top of the window.

Before we can navigate to the Navigate dialog box when we select the Navigate menu,
we need to add this window to our project. To add this new window, right-click the proj-
ect name, MyOwnWpfBrowser, and select Add and then Window. You'll get the Add New
Item dialog box with the Window (WPF) template selected. Change Windowl.xaml to
Navigate.xaml.

In the Navigate.xaml file, delete the current content, and type the following XAML. I'll
explain what it means afterward.

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xam1”
x:Class="Navigate”
Title="Navigate”
Height="130"
Width="500"
ResizeMode="NoResize”
ShowInTaskbar="False”
WindowStartuplLocation="CenterOwner”
FocusManager.FocusedETlement="{Binding ElementName=Url}”">

<Grid>
<Grid.Resources>
<Style TargetType="{x:Type Grid}”’>
<Setter Property="Margin” Value="10" />
</Style>
<Style TargetType="{x:Type Label}”>
<Setter Property="Margin” Value="30,0,5,5" />

<Setter Property="Padding” Value="0,0,0,5" />
</Style>
<Style TargetType="{x:Type TextBox}”>
<Setter Property="Margin” Value="30,0,10,10" />
<Setter Property="AutoWordSelection” Value="True” />
</Style>
<Style TargetType="{x:Type StackPanel}”>
<Setter Property="Orientation” Value="Horizontal” />
<Setter Property="HorizontalAlignment” Value="Right” />
</Style>
<Style TargetType="{x:Type Button}”>
<Setter Property="Width” Value="70" />
<Setter Property="Height” Value="25" />
<Setter Property="Margin” Value="5,0,0,0" />
</Style>
</Grid.Resources>

<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto” />
<ColumnDefinition />

</Grid.ColumnDefinitions>

<Grid.RowDefinitions>
<RowDefinition Height="Auto” />
<RowDefinition Height="Auto” />
<RowDefinition Height="Auto” />

</Grid.RowDefinitions>

<! Label and URL >

<Label Grid.Column="0" Grid.ColumnSpan="2" Grid.Row="0">Type an
Internet address and My Own WPF Browser will open it for you
</Label>

<TextBox Name="Ur1” Grid.ColumnSpan="2" Grid.Column="1" Grid.Row="1">

</TextBox>

You should see a yellow bar
at the top of Design view as
you're typing indicating that the

<! Accept or Cancel >
<StackPanel Grid.CoTlumn="0" Grid.ColumnSpan="2" Grid.Row="2">

<Button Name="okButton” Click="okButton_Click” document root element has been
IsDefault="True”>0K</Button> modified. If you want to see the
<Button Name="cancelButton” IsCancel="True”>Cancel</Button> modification, you need to click

</StackPanel> there to reload the designer.
If you do this as you type, you
might not be able to see the end

</Grid > result immediately.

</Window>

You now have a Navigate window in your WPF Designer that should look like the one in
Figure 6-19.

Now let's return to the XAML code. Most of it is self-explanatory
because of the nature of XAML. But one feature was new in this part
of the sample: the Grid.Resources element in which you've added
styles for all elements found in the grid. This has the advantage of

Type an Internst address and My Cwn WPF Browser will open it for you

n not having to set the styles for each individual control. Pretend you
| had 10 text boxes in your grid; it would be tedious to set the styles for
e L each text box. Well, because of the style definition of Grid.Resources,

Navigate dialog box in the WPF Designer

you have to set the styles just once. What follows in the XAML code

is the grid layout in terms of columns and rows, and then finally the

content of those columns and rows. That's pretty simple, isn't it? You
define your user interface, you actually build it piece by piece, and then you attach the
functionality in Visual Basic. It's a clear separation of Ul and logic!

Now, we can’t navigate to this dialog box because we didn't wire the Click event on the
Navigate menu item. To do this, add a click XAML attribute to the Navigate menu item in
the Browser.xaml file so that it looks like this:

<MenuItem x:Uid="NavigateMenu” Header="_Navigate” click="Navigate_Click” />

In Solution Explorer, right-click the Browser.xaml file, and select View Code. Replace the
content of that file by typing the following VB code:

Imports System.Windows.Forms

PubTic Class Browser
Inherits Window

Public Sub New()
InitializeComponent()
End Sub

Private Sub Navigate_Click(ByVal sender As System.Object, ByVal e As
System.Windows.RoutedEventArgs)
‘ Instantiate the dialog box
Dim dl1g As New Navigate

¢ Configure the dialog box
d1g.Owner = Me

‘ Open the dialog box modally
d1g.ShowDialog()

‘ Process data entered by user if dialog box is accepted

If (dlg.DialogResult.GetValueOrDefault = True) Then
NavigateToUr1(dlg.Url.Text)

End If

dlg.Url.Text = “*
End Sub
Private Sub NavigateToUr1(ByvVal Url As String)

Dim host As New System.Windows.Forms.Integration.WindowsFormsHost()
Dim browserControl As New System.Windows.Forms.WebBrowser()

host.Child = browserControl
Me.gridl.Children.Add(host)
browserControl.Scrol1BarsEnabled = True
browserControl.Navigate(Url)
End Sub
End Class

You'll see that the compiler is reporting a few errors. Those errors are there because of a
code construct in that file that indicates they are Windows Forms elements. Another
possibility is that they are not defined. So, we need to add the references in our project
to remove the Windows Forms errors. Not all controls were developed for version 1 of
WPF, and you might also have done some investment in Windows Forms that you want
to reuse as-is. For that, the .NET Windows client team has developed a class to integrate
Windows Forms elements: WindowsFormsHost. As you can see in the previous code, we
have wrapped the WebBrowser control in an instance of the WindowsFormsHost class. By
doing this, we enabled the control to execute in a WPF application as if it were a real
WPF control. In fact, that is the role of this class. Then by adding the browserControl
element to the Grid element as a child, the WebBrowser control becomes embedded in
the grid as any regular WPF control.

7.

The sample WPF browser you just 9.
created was done this way for

learning purposes. If you do real
development in WPF, there are

a set of best practices to follow

that would enable you to have

your application translated for

different languages. Other design
principles apply to the best prac-
tices, so if you go on to develop
applications commercially in
WPF, please read MSDN for all
those best practices.

To remove the errors, let's add WindowsFormsHost and System.Windows.Forms from the
.NET tab in the references for our project. Right-click the MyOwnWpfBrowser project
name, and then select Add Reference. Add both references. You'll have to do the opera-
tion twice. Once you're done, save all the files, and build your solution.

You should have only one error left. The okButtonClick event handler is not implemented
yet. Select the Navigate.xaml.vb tab, delete all lines in that file, and type the following
Visual Basic code:

Public Class Navigate
Inherits Window
Public Sub New()
Me.InitializeComponent()
End Sub

Private Sub cancelButton_Click(ByVal sender As Object, ByVal e As
RoutedEventArgs)
‘ Dialog box canceled
Me.DialogResult = False

End Sub

Private Sub okButton_Click(ByVal sender As Object, ByVal e As
RoutedEventArgs)
MyBase.DialogResult =

End Sub

End Class

New Nullable(Of Boolean) (True)

Save all the files, build your solution, and then execute your application.

You should have a functional Web browser developed in WPF. We won't implement more
of the Web browser in WPF in this chapter because the goal was to show how different
the development approaches are and how a bit more tedious it is for beginner develop-
ers to develop in WPF. Nevertheless, | am not discouraging you to use WPF—quite the
opposite. | invite you to develop your first applications like we did in this book. When
you develop an application for learning purposes, develop both at the same time, one

in Windows Form and one in WPF. That way you'll become more proficient in WPF, and
you can then go to more advanced topics.

In this chapter, you took a simple application and upgraded it to create a professional-
looking application with many nice features for your users. You learned to add a splash
screen to your application and to work with dialog boxes. You created an About dialog
box and a Navigate dialog box to allow your users to navigate to a URL, and you added an
autocomplete feature to your text boxes and the autosuggest/append feature by using the
browser’s URL history. You then added tool strips, progress bars, and icons from Windows.
You dynamically managed controls, and you learned a lot about new events and how to
handle them using event arguments.

After finishing the Windows Forms implementation, you learned how to add a second
project and created a WPF Web browser. While doing this, you experimented with XAML and
the WPF development technique. You implemented a dialog box that allowed you to enter
a URL and navigate to it. You then learned how to use a Windows Forms control in WPF to
create a hybrid application.

In the next chapter, you'll learn techniques to use when things don’t go well; that is, you'll
learn the art of debugging code. You'll also learn about the Edit and Continue feature, the
new data visualizers, tips and tricks, and much more.

Chapter 6: Modifying Your Web Browser

123

Fixing the Broken Blocks

Debugging an
Application, 126

As you'll discover more and more, when you develop an application, you
rarely succeed on your first attempt. Most of the time, the process goes like
this: brainstorm on paper, look at the users’ needs (often yours), perform
some analysis, prototype, design, develop, test, fix bugs, test the product
again, and finally release it. This is a high-level view of the process; it can be
much more complicated or simplified. It all depends on the complexity of
the project, the number of people involved, and so on. But this is certain:
you always need to debug your applications, and Microsoft Visual Basic 2008
provides many tools to help you fix your bugs faster.

'y s/ 4

To show you how to use the tools and techniques to debug your applications, I've
created a sample application that you'll use in this chapter. If you installed the companion
content at the default location, the application should be at the following location on your
hard disk: Documents\Microsoft Press\VB 2008 Express\Chapter7\. Look for a folder named
Debugger Start in the Chapter7 folder. Double-click the Debugger.sin solution.

This solution has several items you have not learned about yet. First, the solution has
more than one project. This is a common practice in developing applications. In this case,
the solution (named Debugger) contains two projects: a Windows Forms application named
Debugger and a managed library named MyLibrary (a managed DLL). The acronym DLL
The Debugger program is exclu= stands for Dynamic Link Library; a DLL is a library of classes and their methods that are called
sively for the educational pur-
poses of this chapter. It doesn’t dynamically and as needed by an application. A DLL doesn’t contain a main entry point and
:';:E‘g:;:gg;'i‘;:e“i“g excally c.annot be executed by itself. Also, multiple applications can use the same DLL at the same

time.

Second, the project Debugger has a type of file you haven't seen yet: a text file. You can
have different kinds of files in your projects, and a text file is not uncommon. In this case,
one of the methods called by the Debugger.exe application will use the text file, so to have
the file in the output folder, you need to select it in Solution Explorer and then change the
Copy to Output Directory property to Copy If Newer.

Debugging an Application

Using a DLL in an Application

When you design an application, you usually have more than one component. In many
cases, the components are new classes (types). It is good practice to have those typesin a
separate source code file instead of keeping them with the user interface code. Often, the
classes are grouped in a single library or DLL.

When you want to use a type from a library, you need to make your application aware of
all the types and methods contained in that library by adding a reference to the library in the
application.

TO ADD A REFERENCE TO YOUR APPLICATION

Select the project where you want to add the reference; in this case, select Debugger. Solution Explorer - Debugger ~ & X
Right-click Debugger (look at Figure 7-1 to make sure you're at the right place), and then = ion ‘Debugger’ (2 projects)
select Add Reference. =8 ET
As you can see from the tabs on the dialog box that appears, references can come from Rebuild
multiple sources. TR
Project Dependencies...
Select the Projects tab, and then select the MyLibrary project, which contains the man- Project Build Order...
aged DLL. Click OK to add the reference to your project. = Add v
Add Reference...
Because the DLL is in the same solution and you just added a reference to that DLL to Add Service Reference..
your application, Microsoft Visual Studio now knows there is a dependency between the two Set as StartUp Project
Debug 3

and will always build the DLL first so that your application builds the binary with the most
up-to-date DLL possible.

Cut

Paste

You can verify that the reference has been inserted in two ways: X | Remove
1:35 Rename
Open the Project Designer (by right-clicking the project name in Solution Explorer Pro Properties
and choosing Properties), and select the References tab on the left side, as shown in
Figure 7-2. Add Reference menu choice

from the Debugger project
Click the Show All Files button in Solution Explorer, and expand References.

Dehugger“‘|
Application
Unused Ref
: References:
Compile
Reference Mame Type ‘ers.., Copylocal Path
Debug MyLibrary MET 0000 True Civlsersy
System MET 2000 False Chindo
References
Systerm.Data MET 2.0.0.0 False Chindo
Resources Systerm.Deployment MWET 2.0.0.0 False Coindor
Systern.Drawing MET 2000 False ChWindo
Settings Systern MWindows, Forrms MET - 20.0.0 False Chindo
5 Systern . Xml MET 2.0.0.0 False Chindo
Sighing
Iy Extensions
Secuind - " Project Designer's References tab showing
the MylLibrary reference

If the breakpoints don’t appear,
you can add them by clicking in

the left margin.

Using one of these methods, you'll see the reference to MyLibrary. When you're done
adding the reference, your application can create instances of the new types that are built in
the DLL and use them appropriately. The build process (compiler and linker) will now accept
the use of those new types; however, for Visual Studio to have those new types available via
IntelliSense and for the compiler to know about those new types, one more step is required.
You might already have seen the first line of code in the TestApplication.vb file. The line
reads Imports MylLibrary.

What the Imports statement essentially does is import namespaces or programming ele-
ments, such as new types, that are defined in referenced projects and assemblies. By adding
this line of code, you're telling Visual Studio to look into that assembly for the metadata that
will enable IntelliSense to be populated with the public/protected elements and be used at
build time by the compiler. After adding this line, you'll gain access to those items whenever
you have an instance of one of the types built in the library.

Using Breakpoints, Locals, Edit and Continue, and Visualizers

There is no better way to dive into this subject than by going through the code. If the
TestApplication.vb source code file is not already open, open it by right-clicking the TestAppli-
cation.vb file and selecting View Code. You should see red dots on the left side of the screen;
those red dots are breakpoints. Figure 7-3 shows the source code and the breakpoints.

Imports MyLibrary
Imports System. IO -

»

[Public Class Testhpplication

J—] Frivate Zub btn Click(EyVal sender is Jystem.Cbject, ByVal e is Jyste
Dim wylbjectLibrary As New Libraryi()
Dim wyString As String = "Helloworld™

m

HessageBDx Show(myObJectlerary Diwvide (5, 3).ToS3tring())

o § geBo oW [ctlibrary.Divide (3, 3).To3tring())
MessageBox. Show (myChjectlibrary.ReadFile ("MyExistingTextFile.txt™
myObJect,lerary HanlpulateStrlngs ([wyString, 20)

myObJect,lerary HanlpulateStrlngs [wyString, 1)
MessageBox. Show (my3tring)

MessageBox. Show (myChjectlibrary.Divide (6, 4) .To3tring())
MessageBox. Show (myChjectlibrary.ReadFile ("MyNotExistingTextFile.

Source code and breakpoints from the TestApplication Windows form

When the debugger encounters a breakpoint, it stops executing the application. In this
source code, one breakpoint is placed on the call to MessageBox.Show(myString). Another
breakpoint appears in Library.vb in the first line of code of the Divide method. In the follow-
ing procedure, you will execute the code and go through a debugging session.

To debug an application, you can do one of the following:

Press F5, or click the Start Debugging button. The program will start executing normally.
If there is a breakpoint in the source code, the execution will stop there. Otherwise, the
program will continue to execute unless there is an unhandled exception or error.

Alternatively, you can debug the application by stepping through the code line by line.
To do this, press F8, or click the Step Into button.

For now, you'll jump to the first breakpoint and execute the code in the sample program
using the first technique.

TO BEGIN DEBUGGING AN APPLICATION

Press F5, or click the Start Debugg|ng button. Public Function Divide (ByVal numberOne is Integer,
. L =] If nunberOne > 5 Then

You will see a Try Me! button. Click it. The code should stop nuwberTos = O

executing at the first breakpoint in the Divide method, and you ?

should see what is shown in Figure 7-4. The yellow highlighted

line indicates the next statement to be executed.

You're now in debugging mode, so you have access to a plethora Execution stopped at the first breakpoint in the Divide method

of tools and data elements about your application to help you under-

stand what is happening when your application is executed. You can see the content of local
variables, parameters, exception messages, the console window, and many more items you'll
discover in the next few pages. All of that information is useful when an application is not
behaving the way it should and you're trying to understand why. With all the information the
debugger provides, you can try to uncover where the problem lies and see why you have a
bug. You can also use the debugger for learning purposes as you are doing right now. The
debugger is an excellent teacher when you're new to a technology, when you're new to a
language construct, or when you're simply trying to understand a certain element. It is also

common to use the debugger to understand someone else’s code, and it is especially helpful
when you need to modify existing code.

You'll now look at the first series of data elements offered by the debugger while you're
stepping through your code. At the bottom of the Visual Studio screen, you can see a series
of tabs, which can include Locals, Watch, Immediate Window, Output, and Error List. If you
don't see these tabs, you can open these tabs by selecting them in the View and Debug
menus. Most of these are not visible when you are working in editing mode. You saw in
Chapter 3, "Creating Your First Applications,” that the Error List is there only to show the

results of the real-time compilation. While you're debug-

.L":"S it ging, the Locals tab is usually on top and shows the current
ame
" EWe {¥yLibrary Library} variables and object information. If the Locals tab is not
e s : phied displayed, you can add it and the Watch tab by selecting
U 3 e Windows on the Debug menu. Look at Figure 7-5 to see
5 Locals [T Wateh [Efimmediate Window |2} Evror [the tabs from your debugging session.
On the Locals tab, you can see four elements of data
Tabs present during debugging in Visual Studio from your Divide method: Me, Divide, numberOne, and

numberTwo. These are, in order, the instance of the current
object, the return value for the function named Divide, and the two parameters. The debug-
ger detects all elements that are in scope in that method and displays them on the Locals
tab. The elements in scope are all the elements that are "visible” from where the instruction
pointer (that is, the next instruction to be executed) is located. In this case, it could be either
local variables or shared variables. This means that throughout the execution of the Divide
method, you'll be able to follow the values that those items will have. Now it's your turn to
see this for yourself.

TO CONTINUE DEBUGGING THE APPLICATION

Press F8, or click the Step Into button. Then press F8 to get to the division operation.

While debugging, you can always hover the mouse pointer over program elements to
get the information you would otherwise find on the Locals tab. For instance, if you

hover your mouse pointer over the numberOne element, you'll see the B Puplic Function Divide [ByVal numberOne kg

. . . . Q If nuberOne > 5 Then
same value that is shown on the Locals tab, as illustrated in Figure 7-6. P ————
. . Lo > End If
Execute the next I|ne Of Code by pressmg F8 or C||Ck|ng the Step Into button.) Return (numberCne / numberTwo)
r End Function @ numberOne|5
I'll now explain what is going on from the compiler's perspective. On the
.. . . = FPublic Sub Manipulate3trings (EyRef my3tri
Locals tab, the Divide element (the return value of that function) contains Dim myTempCharhrray(] &s Char
— . myTempCharirray = wyS3tring. ToCharirrs
the result of 5 divided by 3, which should be 1. For i is Integer = O To myString.Lend

4 | i

But why does the debugger show 2? You just found a bug. (Note: I've

Locals

inserted this error to demonstrate how small mistakes can create bigger Name Value
problems.) If you hover the mouse pointer over the / operator, you'll see @ te {MyLibrary.Libraryk
)) @ Divide o
the word double. Press F1, and search for the / operator in Help. You'll find @ rumberone 5
@ numberTwo 3

that the result produced by this operator depends on the types of the two
operands used in the operation. In thls case, .the / operator uses.two inte- Getting the value of the numberOne local variable in two
gers. When you use the / operator with two integers, the result is a double. different ways

The result is the full quotient plus the remainder, or 2.

At the same location in the Help system, you'll see that the integer division this function
was supposed to use is actually the \ operator.

The Edit and Continue feature
doesn’t work on 64-bit operating

systems.

At this point, you would ordinarily click the Stop Debugging button, but a new feature

in Visual Basic 2008 allows you to modify your code and verify immediately whether

the change you make solves the problem. This feature is called Edit and Continue. As its
name implies, the Edit and Continue feature lets you edit an element in the application
and continue the execution. In fact, not only can you do this, but you can also modify the
next instruction to execute, change the value of a variable, and re-execute the instruc-
tion. This can be a huge time-saver because you don’t have to stop the execution, make
the change, rebuild, and re-execute the new code. You can see the changes right away.

Go to the left side, where the yellow arrow indicates the next instruction to be executed.
When you hover your mouse pointer over the yellow arrow, you should see a transpar-
ent arrow indicating you can move the yellow arrow. Click and hold the yellow arrow, and
slide it up and back over the division instruction.

Change the / operator to the \ operator, and then re-execute the instruction by pressing
F8 or clicking the Step Into button.

There are some limitations to the
edits you can make with Edit and
Continue. To see a complete list
of limitations, simply perform a
search in the Help system with

the following search criteria:
Edit and Continue [Visual Basic].
Then look for the two sections
about unsupported features that
explain what you can’t do.

5. Look at the Locals tab, and you'll see that the Divide element now has the value 1, which
is correct. You've just fixed your first real bug; you're a better developer now!

6. Save your file, and then step into the code until you see a message box with 1 for the first
division. If you don't see the message box, you might need to switch to it on the Win-
dows taskbar. Click OK in the message box. Continue stepping into the code until you
return to the Divide method with a new set of values and you're pointing at the first
instruction in the method.

When you're back to the Divide method, you will not re-execute every instruction because
you know that the method should now execute correctly. Instead, you'll step out of the code
using the Step Out function. Stepping out doesn’t mean you'll skip the execution; stepping
out simply means that the debugger will execute all the instructions of the current method
and go back to the calling point. If you do it on a single instruction, it will simply execute it.

TO STEP OUT OF THE CODE

1. In the Libraryvb file, click the red dot at the first breakpoint of the Divide method. Click-
ing the red dot removes the breakpoint. The red dot should now be gone.

2. In addition to clicking the red dot, you can disable the second breakpoint by using one
of three other methods:
[Right-click the line of code that has the breakpoint, click the Breakpoint menu choice,

and then click the Delete Breakpoint choice. Look at Figure 7-7 to see this in action.

[l Click the Debug menu, and then select Toggle Breakpoint or press FO.

[Right-click the red dot indicating the breakpoint, and select the only available choice:
Delete Breakpoint.

- End 1 &, | Insert Snippet...
a I
= FPukl; * EvTz/ Painiiom 1z (EyRef myString Ls String, ByY
] Breakpoint ' || @ Delete Breakpoint
T
| & | AddWatch JJ | Disable Breakpoint
 — <] QuickWaich... ——

Deleting a breakpoint by using a contextual menu in the code editor

3. You should be at the first line of code in the Divide method. Now that you're in the Divide
method, you can press Ctrl+Shift+F8 to step out of the Divide method, or you can click
the Step Out button. This will execute all the instructions in that method and return to
the caller.

4. Press F5 to execute all the methods up to the next breakpoint.

You should see another message box with the result 1. Click OK, and then you should be
stopped in the source code of the ReadFile method.

5. The ReadToEnd method reads the content of the open file and puts it into a string vari-
able. Press Ctrl+Shift+F8 and then F8. A message box should display the string variable
content. Click OK in the message box. You should now be back at the caller.

6. Step into the code until you get the string Helloworld in a message box. Pay attention to
the order of execution, and look into the variables and content in each of the tab sections.

7. Click OK in the message box, and then step into the code again to get into the Manipu-
lateStrings method.

The first instruction (apart from the variable declaration) in the ManipulateStrings method
is taking the string received in the argument and converting it to an array of characters. The
reason for converting the string is that strings are immutable in .NET, and therefore you have
to work with them in read-only mode once they're created. Methods modifying a string are
actually returning a new string object that contains the modification applied to it.

Therefore, if you want to modify a string character by character, or if you want to access
one single character in a string by using an index, you first need to convert the string into an
array of characters.

TO BEGIN STEPPING OUT OF THE MANIPULATESTRINGS METHOD

1. Press Ctrl+Shift+F8 to step out of the ManipulateStrings method, or click the Step Out
button.

The first invocation of the method is fine. At the second invocation, however, the applica-
tion stops abruptly. What just happened is an unhandled exception. An unhandled excep-
tion happens whenever an error occurs that is not anticipated or handled explicitly by your
application. In that case, the execution of your application is halted because there is no way

The Using block in the ReadFile
method guarantees that you're
going to dispose of the resources
you're using when you exit the

block delimited by End Using.
You can read more about this by
doing a search in the Help system
by using the Using statement as a
keyword in the Look For text box.

As you can see in the source code,
one of the ManipulateStrings
arguments, myString, is passed
with the ByRef keyword. When
you have an argument that is
passed to a method by reference,
the called method is receiving a
reference to the same memory
location used by the caller.
Therefore, if the method is modi-
fying the content of that argu-
ment, it is modifying the content
at this memory location and thus
modifying the variable from the
caller. In this case, anything that
is done to the myString argument
will modify the value of the vari-
able in the calling code. The other
argument is myPosition, and it is
passed with the ByVal keyword.
When you have an argument that
is passed by value, the method is
receiving a copy of the variable
from the calling code and thus
can’t modify the original value
from the caller. Therefore, the
content will get lost when the
method ends and the execution
flow returns to the caller.

Chapter 7: Fixing the Broken Blocks

133

the application can continue in that state without potentially corrupting the memory or
opening security holes. One of the .NET runtime (CLR) principles is to make sure that neither
ever happens. Therefore, the CLR crashes your application to prevent your application from
continuing to execute in an unknown state. Even though the CLR is taking those precautions,
it is less likely to have insecure code executing in .NET; however, it is still possible.

To help you find the bug that raised the unhandled exception, Visual Studio includes
another useful tool: the Exception Assistant. The assistant is helpful because, based on the
context of the exception, it provides information that helps you debug, including error help-
ers such as the type of exception, troubleshooting tips, and corrective actions that may be
applied through the Exception Assistant. Look at Figure 7-8 to see the information provided
for the current exception.

If i = myPosition Then i obj
i = myString.Length "ﬂ Library.vb
myTempChar Array o= ""Z""é 4 Tl b
@il [P
Next T & IndexOutOfRangeException was unhandled
wyString = MNew String(myTembC .. s aytside the bounds of the array.
Sub
Troubleshooting tips:
liz Function ReadFile (BEv¥WVal pa |Make sure that the maximum index on a list is less than the list size, -
L kdake sure the index is not a negative number,
Make sure data colurnn names are correct, 3
Value Get general help for this exception, i

{MyLibrary Library}
10
tion 1
g "Helloworld"
ipChararray {Length=10}

Search for more Help Online...

Actions:
Wiews Detail..,

Copy exception detail to the clipboard
Watrh B Tmmadizte Windm | = Erear @ict |

Exception Assistant

When you look at the exception name, the troubleshooting tips, and the data visualizers,
it should be apparent why an unhandled exception was raised. The exception name alone is
self-explanatory: IndexOutOfRangeException. The first troubleshooting tip displayed asks you
to make sure the maximum index on a list is less than the list size. Arrays in .NET are zero-
based, which means that the first element starts at index 0. The length of the string received
as the argument is 10, as shown in Figure 7-8.

The intent of this method was to modify the last character of the string when ;YTem;;;;;;r;;i‘i;z —
the position in the array is equal to a position passed by value to the method. In If |© @ myTempChararray | 4 = {Length=10}
this particular case, the position passed by value to the method is 1. : E'i'g e | 4. IndexOutC

Therefore, in the For loop, at the second character of that string, the If statement = e g % :::::E TTTEMPC Index was outs
will return true, and then the index i will get the value of the string length. This means [@ {#)|"a" || Troubleshootis
i is now equal to 10. When the application tries to modify the character at index 10, an [1°®» Rrﬁ 2 EQ v ¥VRL Pa [Make sure that
exception is generated because index 10 is outside the range of the array. The array 4 EQ e e | Make sur the
has 10 characters, with indexes from 0 to 9. Figure 7-9 uses a new visualizer to look at @ (3)]'d'e Make sure datg

the CharArray content.

When you move the mouse pointer over program elements, you'll sometimes see
a magnifier. If you click the drop-down list, you will see a list of visualizers that display
the information in a way that is meaningful to the data type you're seeing. For instance, if
you're working with XML or HTML content, the XML or HTML visualizer will allow you to see
the content as if you were using Windows Internet Explorer or any other XML/HTML tool.
You'll use one of the visualizers soon when you debug the ReadFile method.

TO FIX THE OUT-OF-RANGE PROBLEM

Modify the ManipulateStrings method. Subtract 1 from the string length when you assign
a new value to i. The line of code should look like this after you modify it:

i = myString.Length - 1

After modifying this line of code, move your next execution pointer to the For statement
so that index j starts at 0. Step through the code or step out. This time there should be
no exception. Continue to step through the code, and you should now see another mes-
sage: "HelloworlZ.” The string has been modified because it was passed by reference.

Continue to step through the code, and soon you'll get a second exception, which is a
division-by-zero error. Of course, an exception is raised because the Divide method assigns
0 to the denominator when the numerator is greater than 5. Using a visualizer, you can see
that the numerator is 6, and therefore 0 will be assigned to the denominator.

Array visualizer

If at any time you use the Edit
and Continue feature and you see
that your data is odd-looking or

seems corrupted, stop the debug-
ging process and restart the
debugging of your application.

Again, the first displayed troubleshooting tip helps by suggesting that you make sure the
denominator is not 0. To solve the problem, you could add an /f statement; but before you
do that, consider another .NET principle.

It's good practice in .NET to use the exception mechanism to catch those corner cases
instead of coding special conditional instructions that bloat the code. The exceptions are
an integral part of the .NET Framework, and they're everywhere. I'll now explain the logic
behind this decision.

In a real application, your application would not purposely assign 0 to the denominator;
therefore, most divisions would result in a correct operation. Adding an /f statement would
result in a conditional instruction executed for every single division. And because most divi-
sions would be valid, you would automatically slow down your application. Using an excep-
tion-handling mechanism to catch those corner cases is a much better solution because the
exception-handling code will be executed only when necessary, so your application should
be faster.

When you insert exception-handling code in your application, it is best practice to always
catch exceptions from the most precise to the least precise. In this case, you know that the
DivisionByZeroException exception is the one most likely to occur; therefore, it's the first one
you want to catch.

When you catch an exception, the exception is "handled.” You then need to do some-
thing about it; either you handle it by mentioning it to the user or you throw the exception
back. In this case, you want the user to know that an exception was raised, but you don't
want the program to crash. Here's an example that demonstrates this form of handling that
I'm sure you already know. If you try to divide by zero in Microsoft Office Excel, Excel won't
crash; it will simply indicate that your entry results in a division-by-zero error and displays the
#DIV/0! message in the cell.

An older way of doing things was to make your method return an integer to indicate
success or failure. And that's where people met with trouble because between two applica-
tions, and sometimes between two functions, the same integer code meant two different
things. You received an integer that was supposed to tell you why your application failed, but
the originating code had two meanings, and it was a nightmare to figure out which one was

the valid error code. In addition, when people used error codes, their code was ugly because
they either had a switch case or had a series of nested /f statements.

In .NET, you should never design your methods to return an integer to indicate success
or failure, and you shouldn’t use a Boolean for the same purpose. This is a poor practice that
was used when exceptions did not exist or when people didn't know or want to use them
appropriately. You should never do this. Instead, use exceptions.

TO ADD CODE TO HANDLE DIFFERENT EXCEPTIONS

Click the Stop Debugging button, or press Ctrl+Alt+Break to stop debugging mode. In
TestApplication.vb, modify the btn_Click method to look like the following:

Dim myObjectLibrary as New Library(Q)
Dim myString As String = “Helloworld”
Dim myFile As String = “”

Try
MessageBox.Show(myObjectLibrary.Divide(5, 3).ToString())
MessageBox.Show(myObjectLibrary.Divide(3, 3).ToString(Q))
MessageBox.Show(myObjectLibrary.Divide(6, 4).ToString())

Catch ex As DivideByZeroException
MessageBox.Show(ex.ToString())

End Try

Try
myFile = “MyExistingTextFile.txt”
MessageBox.Show(myObjectLibrary.ReadFile(myFile))
myFile = “MyNotExistingTextFile.txt”
MessageBox.Show(myObjectLibrary.ReadFile(myFile))

Catch ex As FileNotFoundException
MessageBox.Show(myFile + “ doesn’t exist!”)

End Try

myObjectLibrary.ManipulateStrings(myString, 20)
MessageBox.Show(myString)
myObjectLibrary.ManipulateStrings(myString, 1)
MessageBox.Show(myString)

Remove all the breakpoints in TestApplication.vb and Library.vb, and execute the code.
Look at the different message boxes. If a DivideByZeroException or FileNotFoundException
exception occurs, a message box will be displayed.

During this debugging session, you didn't use some other useful tabs. For instance, the
Watch tab is important because you can enter variables and expressions that you want to
follow and monitor during the execution of the application.

Another useful tool is the Immediate window, where you can type anything and the
compiler verifies, compiles, and executes it on the fly! Any effect on the application you are
debugging is immediate. Any piece of code that can be evaluated by the compiler and does
not require a block of code can be entered in the Immediate window. You could enter a
loop, for instance. You also have full access to IntelliSense in this window just as if you were
in the code editor. Let's look at a simple example.

TO USE THE IMMEDIATE WINDOW

Put a breakpoint at the first instruction in your application, and run the application by

pressing F5.

If you don't see the Immediate window, just click the Debug menu, and then click Win-
dows and Immediate. You should have an empty Immediate window at the bottom of

your screen.

Type i = 5, and then hit the Try-It button.
Type If i > 2 Then MessageBox.Show(i), and then press Enter.

The message box that appears should show a 5. You can test code in real time during
the execution without executing a single line of code from your application. But beware
that if you use variables that are in your application and modify them in the Immediate
window, you modify them for the application as well.

Click the Stop Debugging button to stop executing the application.

You're now not only able to build new applications, but you're also aware of the tech-
niques and tools available to debug them.

In this chapter, you learned about breakpoints; about different techniques to step into,
step over, and step out of the source code; and about data visualizers to see the data in the

most pertinent way based on its content or context. You also learned how to work with a DLL.

You discovered that you can use the Edit and Continue feature to modify variables at run
time and continue the execution.

You learned how you can move the next instruction pointer to re-execute some lines of
code. You also started to deal with exceptions and learned the dos and don'ts of debugging.
You saw how subtle bugs can find their way in—usually because of distractions and some-
times simply because you don't possess all of the knowledge and experience yet—but that's
OK. Don't worry; you're in a process called learning.

In the next chapter, you'll learn about using databases, working with ADO.NET, using LINQ,
and manipulating data to and from a Microsoft SQL Server Express Edition database. You'll
learn how to use this data to populate controls on a Windows form. You'll also learn how to
create an application to add, modify, delete, and visualize rows in a car tracker application.

Chapter 7: Fixing the Broken Blocks

139

Managing the Data

What Is a Database?, 142

Using SQL Server 2005
Express Edition in Visual
Basic 2008 Express
Edition, 150

What Are ADO.NET, Data
Binding, and LINQ?, 163

So far, you've seen how to build a Windows Forms application and
examples of the characteristics that type of application has, but you have not
managed a great deal of data. Managing data is always a concern, whether
at home, at the office, at school, or even for recreation. For instance, | have
many recipes and ideas for great dinners, but when | want to prepare a nice
meal, it takes me so much time to find the recipes that usually | change my
mind about cooking. If | had this information in my computer, it would be
easy to quickly access my recipe for rack of lamb with herb crust and prepare
a fabulous meal. | could also add other pertinent information to the recipe
file, such as what side dishes were served with the main dish or what wines
went well with this recipe. | could even add a picture of the finished meal.

You can manage some data using a word processing program, such as
Microsoft Word, but it would become unmanageable as soon as you collect
a lot of recipes and need to search for information within that file. Using a
spreadsheet program, such as Microsoft Excel, is also problematic. Trying
to find information quickly when using more than one variable is close to
impossible. Using the recipe example, suppose you want to retrieve all the
recipes that can serve at least six people and that have lamb stew meat but
no mint in the ingredients because one of your guests is allergic to mint.
Imagine the time it would take to find that information in either a Word file
or an Excel spreadsheet. That's where databases come to the rescue.

In this chapter, you'll learn what a database is; how to create a database;
how to add, delete, and update data; how to search or query a database;

What Is a Database?

You’ll learn about some of the
other elements contained in a

relational database later in this
chapter.

In reality, no po
fully implemen
tional model
ated in the

and how to use a database in a Windows Forms application. Accompanying Microsoft Visual
Basic 2008 Express Edition is Microsoft SQL Server 2005 Express Edition, which is a fully
workable version of its big brother, Microsoft SQL Server 2005, but with fewer features. SQL
Server 2005 Express Edition is free, easy to use, and geared toward building simple and

dynamic applications.

A database is a collection of data that is stored in files on disks using a systematic struc-
ture. Because of this systematic structure, users can query the data using management
software called a database management system (DBMS). SQL Server 2005 is a relational
database management system (RDBMS), which means its data is structured using sets (the
sets theory in mathematics) and logical relations (predicates). Most commercial database
products are based on the relational model. In fact, it has been one of the most popular
models for the past 20 years. Apart from Microsoft SQL Server, you might have also heard of
Oracle or IBM DB2.

What's in a Database?

A relational database, such as SQL Server 2005, contains multiple tables that are related.
A database can also contain views, stored procedures, functions, indexes, security informa-
tion, and other elements. In this section, you'll learn about the basic elements of a relational
database, which are a table and its components.

A table contains columns and rows. A column defines the type of data, and a row con-
tains the actual data. Because the relational model has strict rules, an RDBMS that uses the
relation model must implement them.

What Are Data Normalization and Data Integrity?

The rules defining the relational model are called normalization rules. Normalization is a
process that data architects apply whenever they are at the design phase. Normalization rules
exist to reduce the chance of having the same data stored in more than one table; in other
words, they reduce the level of redundancy and preserve data integrity in the database. Logi-
cally, the normalization process exists to help place data into its own table so that no dupli-
cation of information occurs in more than one table. For example, having an application in
which a customer’s address, city, state or province, ZIP or postal code, and country are dupli-
cated in two different tables is a bad idea. There should be only one link from the customer
table to the other table referencing additional customer information. Having duplicate data
makes updates and deletions more problematic and also poses the risk of having modified
data in one table and not the other. This example demonstrates a data integrity problem.

Let's look at another data integrity problem. Suppose you have both a product table and
a table containing customer order details. Although you normalized your data, data integrity
does not exist in this example. Why? Let’s say you decide to delete productl, which means
removing the row from the product table that corresponds to productl. If the RDBMS would
let you do this, it would mean that suddenly all rows in the customer order details table that
contained this product would not be able to show which product was ordered because the
product would no longer exist. Those rows would be orphaned, which could have disastrous
results for the company and the application.

As you can see, data integrity is an important concept related to the accuracy, valid-
ity, and correctness of the data. To better understand some of these concepts, let's look at
another example.

Suppose you are the owner of an online store and want to manage your company
using a software application. To use a software application, you must start thinking about
using a database. Any company, both small and large, typically has a great deal of data to
store. Also, because data is all around us, people want more access to this data so they can
create reports and conduct analysis. That is why databases are so useful. Returning to your
online store, at a minimum you would like to store information about your customers, prod-
ucts, invoices, purchasing, and inventory. To summarize all these areas, let’s take a look at the
Product, OrderHeader, and OrderDetail tables, as shown in Table 8-1, Table 8-2, and Table 8-3,
respectively.

The following tables have purposely
been kept simple (some columns are

missing) to illustrate the concepts
you've just learned.

Column Name Data Type Allow Nulls?

ProductID (PK) Integer Not Null
ProductNumber nvarchar(10) Not Null
Name nvarchar(50) Not Null
Description nvarchar(200) Null

Photo image Null

Price money Not Null
Taxable bit Not Null

Product Table

Column Name Data Type Allow Nulls?
OrderID (PK) integer Not Null
OrderDate datetime Not Null
DueDate datetime Not Null
CustomerlD (FK) integer Not Null
TaxAmount money Not Null
Total money Not Null

OrderHeader Table

Column Name Data Type Allow Nulls?
OrderlID (PK) (FK) integer Not Null
OrderDetaillD (PK) integer Not Null
ProductID (FK) integer Not Null
Quantity integer Not Null
LineTotal numeric(38,6) Not Null

OrderDetail Table

You can also represent your Product, OrderHeader, and OrderDetail tables graphically, as
shown in Figure 8-1. This is a common way of looking at databases.

Product
€, ProductiD: int IDENTITY (1)

ProductMumber: nvarchar(10) MOT MULL

Marne: nvarchar(50) NOT NULL]
Description: nvarchar(200) NULL —— — — — — — — — _FK_ErDEcLl_OrderDetaH
Phato: image MULL

Price: money NOT MULL) ‘

Taxable: bit NOT NULL OrderDetail

&, OrderDetaillD: int IDENTITY (1)

OrderlD: int MOT MULL (FI)
Product!D: int MOT NULL (FK)
Cluantity: int NOT NULL
LineTotal: numeric(36,8) NULL

W
OrderHeader |

@, OrderlD: int IDENTITY(1) |

OrderDate: datetime MOT MULL
DueDate; datetime WOLL ¢ Fl_Order_prderDetail
CustornerlD: int NOT NULL (FK)

TaxAmount: money MOT MULL
Tatal: money NOT NULL

Partial database diagram for a small online company

What Is Null?

One of your first observations about the tables is that they each have an Allow Nulls?
column, which is also reflected in Figure 8-1. When designing a table, you need to consider
what's absolutely necessary (Not Null) and what's not (Null). For instance, when you insert a
new row into the Product table, it might not matter whether the product has a photo, but it
might be a problem to have a product without a product number. Now let’s correlate how
allowing null is related to data integrity. Whenever a table is designed with columns that don’t
allow null, the RDBMS will reject any insertion of a new row that has a column set to null when
it is not supposed to be. When you pay attention to those columns that cannot be set to null
when designing your tables, you automatically add another data integrity layer by making
sure that all the necessary data is present before the record is inserted into the database.

What Are Primary Keys and Foreign Keys?

You can see in the previous tables that some columns are marked “(PK),” which stands for
primary key. In Figure 8-1, primary key columns are marked with a yellow key. Some other
columns are identified with “(FK)" to indicate that these columns are foreign keys. Let’s start
by talking about the primary key.

Primary Keys
A primary key is a value that is used to uniquely identify a specific row in a table. A pri-
mary key has the following attributes:

Can be composed of one or more column names. When it's composed of more than one
column, it's called a composite key.

Is often a numeric field.

Is often generated by the RDBMS, in which case it's called a surrogate key. A surrogate
key is frequently (but not always) a sequential number. A surrogate key is also called an
identity in SQL Server 2005. An identity starts at a set number, called the identity seed,
and increments by another set number, called the identity increment. For example, if you
create a table named Product, you can have a column named ProductID that is set as an
identity, and you can set the identity seed to 1 with an identity increment to 1. When the
first row is created in the Product table, the ProductID will be generated by the RDBMS
and set to 1. The following row will have a ProductID that is set to 2, and so forth.

Should be as small as possible but large enough to support the number of rows it will
represent.

Is immutable, meaning its value should never change.

Is also a natural key when the key has a logical relationship with the rest of the columns
in the table. For example, if you had a book table, the ISBN number could be used as a
primary key because it uniquely identifies one book. It would be an advantage compared
with a generated key because it would take less space and has to exist anyway!

Is also used to relate two tables together.

In our Product table example, ProductID is the primary key. At design time, it will also be
an identity. You can claim that the product number could be a primary key—and you could
be right—but in certain scenarios a product number could be used twice. For example, sup-
pose you have product #FG-001 with a revision 1.0. In time, you change the product because
of customer complaints and give it a revision 2.0. You want your customers to continue to
order the same product number for many business reasons. In your database, you would
retire the product revision 1.0 by perhaps changing a column named Active, and you would
then add another row in your table with the new product details including revision 2.0 and
set it to Active. Why can’t you use the same row? Let's assume that six months after creating
the new product revision, you want to create a graph to determine whether your changes to
the product mean you had fewer returns from your customers. It would be difficult to come
up with good data if you had only one row for the product, but it would be fairly easy to do
if you have two rows because they would be unique in the database, with each having a dif-
ferent ProductID.

In the OrderDetail table, you have a composite primary key that is a combination of
OrderlID and OrderDetaillD. This means these two columns would ensure the uniqueness of a
row in the OrderDetail table. In the OrderHeader table, OrderlD is the primary key.

Foreign Keys

A foreign key is a column in a table that relates to a column in another table. It also
lets you create relations between tables. A foreign key in a table is always a primary key in
another table. Foreign keys are used to enforce data integrity by being part of foreign key
constraints. Foreign key constraints are created to make sure referential integrity is preserved
and not violated. There are two foreign keys in the OrderDetail table. The first is the Produc-
tID foreign key, and it's related to the primary key named ProductID in the Product table.
The second is the OrderID foreign key, and it’s related to the primary key named OrderID in
the OrderHeader table. Concerning the naming of foreign keys, it's good practice to define
them using the same name as their primary key counterpart; otherwise, it might lead to
problems for people looking at your logical data model.

I introduced you to data integrity earlier in this chapter. When doing so, | cited an example
that could create similar problems to the one in the Product and OrderDetail table example.
Adding a foreign key constraint between these two tables would prevent a user from deleting

a product in the Product table that could potentially create a large number of orphaned rows
in the OrderDetail table. If you look at Figure 8-1, the foreign key constraint between Product
and OrderDetail is shown as a line labeled FK_Product_OrderDetail between the two tables.
Naming constraints is an easy way to understand their purpose. We have only three tables in
our example, but you can imagine that constraints without names that exist between numer-
ous tables would quickly become unclear.

Another foreign key constraint is the one between the OrderHeader and OrderDetail
tables; this constraint prevents an order from being deleted before all of its matching order
details have been deleted. You can see in Figure 8-1 that the OrderHeader table has a sec-
ond foreign key called CustomerID. Therefore, another foreign key constraint is between the
Customer and OrderHeader tables. Following the same principles found with other foreign
key constraints, this prevents a customer in the Customer table from being deleted before all
the matching orders in the OrderHeader table and all the detail rows in the OrderDetail table
that match the orders have been deleted.

If there were no foreign key constraints in this database, data integrity would be eas-
ily violated. The database would be left with a big problem: a time bomb of orphaned rows
that take up space and slow down all queries. By adding foreign key constraints, the RDBMS
ensures, for example, that all rows in the OrderDetail table that reference a product have
been deleted before the product row can be deleted in the Product table.

How Do You Interact with a Relational Database?

So far, I've talked about tables in which you can update, add, or delete rows or query the
database to get particular results. Perhaps you've been asking yourself, “But how do | talk or
interact with the database? How does it return the answers to my queries? And how do you
create those tables?” I'm sure you've been asking yourself many other questions as well. The
answer to all of these questions in this chapter is SQL Server 2005 Express Edition.

SQL stands for Structured Query Language and was invented in the 1970s. The acronym
is pronounced “sequel” and was also introduced using that same spelling, but because of a
trademark dispute in the United Kingdom in the 1970s, the name was shortened to the now
well-known SQL acronym. (The other acronym, SEQUEL, means Structured English Query

Language.) SQL is an English-based language and is similar to human-language questions.
That's why it's easy and fast to learn basic SQL programming. Let's look at two examples:

SELECT * FROM CUSTOMER
SELECT COUNT(*) FROM PRODUCT

The first line can be translated as give me all (*) rows in the Customer table, or (less
formally) give me the list of customers. The second line can be translated as a request to give
me the total of all rows contained in the Product table—in other words, to count how many
products this company has.

When you issue a SQL query to a relational database, the database returns a result set
that simply contains the rows with the answers to your query. Using SQL, you can also group
or aggregate the results of a query. You also use SQL to create tables or delete (drop) tables.
You've learned about primary keys, foreign keys, and constraints, but you probably didn't
know that they're also created using SQL.

It's also good to know that SQL is an ANSI/ISO standard; therefore, any RDBMS pro-
ducer needs to obey a set of rules. Basic SQL is a base programming language and as such
is usually not sufficient to solve all the possible problems or provide all the analysis needs
that an application might demand. It has a rather limited set of keywords. Because their first
goal is to query data from a database, the most popular RDBMSs on the market have added
extensions to SQL to permit the addition of procedural code. These additions turn SQL into
a full-fledged programming language that helps solve more complex problems. Among the
popular extensions and their manufacturers are Microsoft Transact-SQL (T-SQL), Oracle PL/
SQL, and IBM SQL PL. Recently, in addition to these extensions, RDBMS manufacturers have
added support for other programming languages. Microsoft added .NET language support
into the database with all SQL Server 2005 editions, while Oracle and IBM have added Java
support.

There are more database concepts and theories than those explained here, but | have
covered the immediate database needs for this book. You'll now apply those concepts con-
cretely in a Windows Forms application that will use a SQL Server Express 2005 database.

SQL Server is well integrated
because Visual Studio provides a

great software development kit
(SDK) for other components to
plug into the IDE.

The .mdf file extension is used
by the SQL Server family of prod-
ucts. The .mdf file contains the
entire database, which means all
tables and other elements that
exist in the database are located
in this file. The only element that

is not part of the .mdf file is the
log information, which is in an
Adf file that is created whenever
you create a database. You can
see the .Idf file by clicking the
Show All Files icon in Solution
Explorer.

In this section, you will develop a Windows Forms application. This will be a car-tracking
application that lets the user track the prices of cars over time and determine where the list-
ing was observed. You will first use Visual Studio to create the database and the tables, and
then you'll add some data and validate some of the concepts you just learned. You will then
create a Windows application that will use your data and build a data-centric application that
lets users store any amount of data.

Refer to Figure 8-2 for the database diagram pertaining to this section’s example.

Caolar Make
€, ColorlD: int IDENTITY (1) €4 MakelD: int IDENTITY (1)

ColarMarne: nvarchar(30) MOT MULL MakeMame: nvarchar(40) MOT MULL
Metallic: bit NOT MULL Country: nvarchar(40) NOT NULL

| |
|FK Listing_Color 1 Fi | icting Make

_______ . 4

Listing

CarType

28 CarTypelD: int IDENTITY (1) &, ListinglD: int IDEMTITY (1)

ColordD: int MOT MULL {FK

CarTypeName: nvarchar(20) NOT NULL t—
arTypeName: marchari20) MakelD: int NOT NULL {FI)

MurberOfDoors: int MOT MULL

DateSeen: datetime NOT NULL
Year: nvarchar(4) MOT NULL
#® Price: maney NOT MULL
Cylinder: int MOT MULL

HPF: int MOT MULL

URL: rwarchar(250) MOT MULL
EPGCity: int MULL
EPGHighway: int MULL

Motes: nvarchar260) NULL

I CarTypelD: int NOT NULL (FK)
|

Fl_Listing_CarType

Figure 8-2
Car tracker application database diagram

150

Microsoft Visual Basic 2008 Express Edition: Build a Program Now!

Creating a Database Using Visual Basic 2008 Express Edition

Before using data, you need a place to store the data. In this section, you'll learn how to
create a database in Visual Basic 2008 Express Edition. You'll also see how easy it is for you to
create all the tables you need to satisfy the needs of the car-tracking application because the
SQL Server team did a wonderful job of integrating the tools into Visual Studio.

TO CREATE A DATABASE USING VISUAL BASIC 2008 EXPRESS EDITION

Start Visual Basic 2008 Express Edition.
Create a new Windows Forms application, and name it CarTracker.

You will now create the database that will hold all the tables for the application. In Solu-
tion Explorer, right-click the CarTracker project, select Add, and then select New Item.

In the Add New Item dialog box, select Service-Based Database under Visual Studio
Installed Templates. Type the filename CarTracker.mdf, and click the Add button. By
doing so, you'll create a database and attach the database file (CarTracker.mdf) to your
CarTracker project.

You will then see the Data Source Configuration Wizard. Don't pay attention to this dia-
log box just yet; you'll learn about it soon. Just click Cancel for now.

Solution Explorer should now contain a new item within your project: the database file
called CarTracker.mdf, as shown in Figure 8-3.

You will now start adding tables to your database. To do this, you can either double-click
the CarTracker.mdf file or right-click CarTracker.mdf and then select Open. This causes
Visual Studio to connect to the SQL Server 2005 Express Edition instance installed on
your machine.

Database Explorer should appear on the left side of the screen where the Toolbox usually

opens, as shown in Figure 8-4. If you do not see Database Explorer, select the View
menu, and then select Database Explorer.

Under the database name, you should see a list of database elements represented by
folder icons. Although you will not recognize most of them, you will see two elements

Solution Explorer - CarTracker
@5 E
E CarTracker
=d| My Project
|| CarTracker.mdf
. 5] Formlvb

Solution Explorer with the
newly created CarTracker.
mdf database file

Database Explorer >~ 1 X
EIREN R
=~ [¥ Data Connections
B |3k CarTracker.mdf
G- [Database Diagrams
[d Tables
[d Views
3 Stored Procedures
- 3 Functions
- 3 Synonyms
- (3 Types
- [Assemblies

¥0g|ool 4

..
-
-
-

Database Explorer with the

CarTracker database connected

Currently, you have only one
database in your project, but it’s
not unusual to need to connect
to and get information from
two or more databases. That's

why Database Connections in
Database Explorer is there as a
tree—it’s representing each data-
base as a node in that tree. You
have only one node in the tree,
which is your CarTracker database.

that are already familiar to you: database diagrams and tables. You will use both of these
elements shortly.

You'll know that you're connected to the database when you see the database icon with
an electric cord. When you're disconnected, you will see the database icon with a red X.
However, seeing a red X does not necessarily mean you're disconnected. You might have
been disconnected earlier but never refreshed Database Explorer. To verify the state of
the connection to your database, you should click the Refresh button in the Database
Explorer toolbar.

Right-click your database named CarTracker.mdf in Database Explorer, and select Close
Connection. You should now see the red X near your database name.

You're now disconnected. You can reconnect in a couple of ways. You can click the
Refresh button, or you can right-click the filename in Database Explorer and select
Modify Connection.... If you choose the Modify Connection route, you will see a dialog
box like the one shown in Figure 8-5.

-

Medify Connection =]

Enter information to connect to the selected data source or click
"Change" to choose a different data source and/or provider,

Data source:

Microsoft SQL Server Database File (SglClient) Change...

Database file name (hew or existing):

Yrojectsh\CarTracker\CarTracker\CarTracker.mdf

Log on to the server

@ Use Windows Authentication

(70 Use SOL Server Authentication

Save my password

I Ok | | Cancel |

Test Connection ‘

The Modify Connection dialog box lets you recon-
nect to your CarTracker database.

Because it's good practice to test your connection, click the Test Connection button to
verify the connection currently specified. This also verifies that SQL Server 2005 Express
Edition is ready and able to receive connections from your applications. Click OK to
reconnect to your database.

Creating Tables in Your Database

Now you'll create all the tables and relationships needed for the CarTracker application.
Using the information found in Figure 8-2, you'll create tables, primary keys, identities, and
foreign key relationships in the CarTracker database, and you'll do all of this without leaving
Visual Studio.

777

Saving Database Files

You should pay attention to
the database filename in the
Modify Connection dialog box.
If you didn't save all the files in
your project, everything is still
located in a temporary folder
identified by the content of the
text box. As soon as you save
all the files in your project, the
database will be saved along

TO CREATE TABLES IN A DATABASE

Let's start with the Color table. In Database Explorer, right-click the Tables folder icon,
and select Add New Table. You should now see an empty grid on the designer surface,
which is the Table Designer. You will also see that a new toolbar has appeared, which is
the Table Designer toolbar. This toolbar has all the tools necessary to help you create a
table without writing a single SQL query.

You'll now add a column to the Color table. Type ColorID in the Column Name field
of the Table Designer. Select int as the data type, and clear the Allow Nulls check box
because this column will be the primary key in this table. A primary key cannot be null
since it is part of the uniqueness of a row in the table.

Before you add the second column in the Color table, you'll set the ColorlD column as

the primary key. To do so, you need to click the Set Primary Key icon (the key icon) in the

Table Designer toolbar.

The database diagram shown in Figure 8-2 illustrates that you also need this column to
be an identity; therefore, you need to modify that property in the Column Properties
window right below the Table Designer. Scroll down until you see the Identity Specifica-
tion group. Click the + sign located to the left of the words Identity Specification to
expand this group. Now click in the (Is Identity) field, and set it to Yes. Leave both Iden-
tity Seed and Identity Increment set at 1 for now.

with the other project files,
wherever they are located. You
can later verify that location by
selecting the Tools menu, select-
ing Options..., and then looking
at the Projects and Solutions
node in the tree. On the right
panel in this dialog box you can
determine where your projects
are stored by looking at the first
text box called Visual Studio
Projects Location.

7”77

From this point onward, for every
tree control and every control
that is a group (that is, has a +

sign), I'll use the word expand
instead of repeating the words
click the + sign.

As a reminder, when a column is
an identity, SQL Server automati-
cally generates a new number
each time a row is created in a

table. It starts at the value indi-
cated by the Identity Seed prop-
erty and increases in increments
by the value indicated by the
Identity Increment property.

In the Table Designer, the little
black triangle indicates the cur-
rent row.

- [E ColorName
.. [E] Metallic

Database Explorer
with the Tables fold-
er and Color table
expanded

5.

8.
9.

To add another column, click in the row under the ColorID column name. Add the two
remaining columns based on the diagram shown in Figure 8-2. Set the size of the Color-
Name nvarchar by typing 30 in the Data Type field. When done, your table should look
like the one shown in Figure 8-6.

dbo.Tablel: TabI_CARTRACKER.MDF)“]

kglume Neme Data Type Allow Nulls
% ColodD int |
p ColorMame wearcharany D
betallic et D
O

Table Designer with all the columns for the Color table

Now that you're done with the design, you need to add the table to the database.

To do this, you need to save the table. Click the Save icon, or press Ctrl+S. When the
Choose Name dialog box appears, as shown in Figure 8-7, name your table Color, and
then click OK.

Choose Name (a3
Enter a name for the table:

Colod

I Ok I I Cancel

The Choose Name dialog box showing the Color table name

Expand the Tables folder in Database Explorer to view the list of existing tables in

the database; the new Color table should appear. When you expand the Color table to
view the list of columns, all three columns you just created should appear, as shown in
Figure 8-8.

Close the Color table in the Table Designer by clicking the X near Solution Explorer.

Click the Save All icon in the toolbar to save your project on disk. Make sure the project
name is CarTracker, and click the Save button.

10. Before creating other tables, read this step completely. Now that you have the knowl-

edge to create a table, create all remaining tables (ColorType, Make, and Listing) using
the same techniques you've just learned. Make sure all tables and all their columns are
created in the same way as shown in Figure 8-2. Don't worry about establishing the
relationships, because you'll create those in the following exercises. Between each table
creation, save your new table immediately, and make sure it appears in Database
Explorer. Then close the table in the designer surface as shown earlier in step 8 of this
section.

Creating Relationships Between the Tables

You have created tables, but they don’t have any relationships. You'll now add those rela-

tionships and make sure your database has data integrity to avoid any orphaned rows. Like
many other elements in Visual Basic 2008 Express Edition, there's more than one way to cre-
ate the relationships. One is more visual than the other, and you'll start with this more visual
approach to stay focused on the main idea of the book, which is being productive.

Before you're able to create the relationships visually, there is a prerequisite to add to

your project: a database diagram. It might not look exactly like the one shown in Figure 8-2,
but it will be similar.

TO CREATE RELATIONSHIPS BETWEEN TABLES

1.

Go to Database Explorer, and right-click the Database Diagrams node located above the
Tables node. Select Add New Diagram. A dialog box appears indicating that SQL Server
2005 Express Edition doesn’t have all the database objects it needs if you want to create
database diagrams.

Click Yes to have SQL Server create the components it needs to obtain a database dia-
gram. When it's done creating the components, you should be asked which tables you
want to add to your diagram in the Add Table dialog box.

Select all the tables you created, and then click Add. It should take less than a minute for
your diagram to appear. Click the Close button to indicate to Visual Studio that you have
all the tables you need.

Whenever you click a column
name in Database Explorer, you'll
see the properties listed in the
Properties window. This is the
same Properties window you‘ve
been using, with one minor dif-
ference: it is a read-only view and
therefore does not let you modify
information.

Depending on your resolu-

tion, the view might be tight. If
you want to view more of the
diagram, you might need to
unpin or close some windows,
such as Solution Explorer or

the Properties window; you can
return these items to your screen
by selecting the View menu and
then selecting Solution Explorer
or Properties Window. You can
also change the zoom value by
changing the value in the Zoom
drop-down list.

Chapter 8: Managing the Data

155

Click the Save All button, or press Ctrl+Shift+S. You'll be asked to save your diagram and
choose a name. Name your diagram CarTrackerDiagram.

If you don't see your database diagram, first go to the Database Diagrams node, expand
it, and then open the diagram by double-clicking it. You should see the designer surface
with all your tables.

Let's focus on one relationship we need to create. When you look at Figure 8-2, you'll
see that the ColorID column is present in the Listing table because there's a relation-
ship to the Color table. The line between both tables is an FK relationship. You need to
have this relationship established, or otherwise you'll have orphaned nodes in the Listing
table whenever a Color row is deleted. This means you have to establish a relationship
between the primary key table and the foreign key table. In this case, you need to create
a relationship from the Color table toward the Listing table.

In the database diagram, click ColorID in the Color table where you see the small
yellow key.

Look at Figure 8-9 to see where you should be at the end of this step. Drag ColorID
toward the Listing table; you should see a line appear as you drag. Align your mouse
pointer so that it's over the column with which you want to create the relationship—in
your case, over the ColorlD field in the Listing table. When you see a small + appear,
drop it.

Listing *
0 % ListingID
:Marme Q_'_ColorID
ity i-" MakelD
; CarTypelD
DateSeen
Year
Price
ColorMarme Cylinder
hdetallic HP
LRL

Creating the foreign key relationship between the Color and Listing tables

8. If you correctly selected and released the mouse button once you were over ColorID in
the Listing table, you should see a Tables and Columns dialog box asking you to con-
firm the creation of the FK relationship. It's important for each table that ColorID is the
column name that appears to link both tables in that dialog box. If the primary key and
foreign key tables are correct and the selected column names are correct, click the OK
button.

You should then see the Foreign Key Relationship dialog box shown in Figure 8-10. To reinforce the concept of estab-
lishing relationships between
tables, I'll now give you another
way of looking at the relationship
in this exercise. There are two
Selected Relationship: reasons why the ColorID column
Editing properties for new relationship, The ‘Tables And Columns is in the Listing table as an FK.
Specification’ property needs to be filled in before the new relationship will be First, it is used for a normaliza-
accepted. tion and design principle because
you don’t want to have duplicate
data. Second, it is used for data
integrity reasons and, more spe-
cifically, for the orphaned rows
problem. Let’s look at it with
some sample data. Suppose there
is a Color row called Dark Blue,
and the Listing table contains six
different ad definitions that are
Dark Blue. If you remove the Dark
Blue color from the Color table,
it would mean that those six ads
would have orphaned data. That
is why you created a foreign key
relationship: to make sure that if
an application or a user tries to
. remove data in the Color table, a
Figure 8-10 o)) o process within SQL Server 2005
Foreign Key Relationship dialog box for the relationship between the Listing and Color tables will prevent this by validating
that no “kids” are left behind in
the Listing table before allowing

9. Although you can change some properties within this dialog box, just click OK for now. :hzldeletion to occur in the Color
See Figure 8-11 to view the diagram with the new relationship created. y

B (General)
Check Existing Data On Creatio Yes
Tables &nd Colurmns Specificat
E Database Designer
Enforce For Replication Yes
Enforce Foreign Key Constraint Yes
IMSERT &nd UPDATE Specificat
E Identity
(Marme) FE_Listing_Colar
Description

Chapter 8: Managing the Data 157

In Figure 8-11, note the infinity symbol located close to the Listing table and the yellow
key located close to the Color table. The infinity symbol on the Listing table indicates the
table’s cardinality. It indicates that, in this relationship, the Listing table can contain any

number of rows with information coming from the matching primary key

-l table. The yellow key indicates from which table the primary key is being
:I0 % ListingID
:Mame Co:orIgD taken'
Ty MakelD | rearranged the diagram so that the two tables are close together.

CarTypelD You can rearrange your tables any way you want by dragging them by
Dateseen the title bar (that is, where the table name is displayed). This is sometimes
Price necessary when you create relationships so that you do not end up with
Cylinder an unusual-looking diagram. | suggest you put your Listing table in the
HP middle of your other tables because it will be easier to create relation-

L , HR ships this way. You can also rearrange the tables on your diagram at

re 8-1 _ - any time by right-clicking anywhere except on a table on the diagram’s
moﬂgegﬂaggﬂ;ﬁfmg the new FK relationship between the designer surface and selecting Arrange Tables. You can also have the
labels for every relationship appear on the diagram by right-clicking the
diagram’s designer surface and selecting Show Relationship Labels.
Now create the other FK relationships by using either Figure 8-2 or Table 8-4.

Year

ColorMarme

detallic

Column Primary Key Table Foreign Key Table
MakelD Make Listing
CarTypelD CarType Listing

List of Foreign Key Relationships to Create

When finished, the content of your diagram should resemble the content shown in Fig-
ure 8-12. Make sure your relationships are arranged properly by looking at where the infinity
symbols and yellow keys are located and by looking at Table 8-4 for verification.

Fraon, | You can review the proper
fremm— of any relationship by do
T clicking the line betwee

tables or by right-clickii
selecting Properties fr
context menu.

Figure 8-12
Completed CarTracker database diagram

Click the Save All button or press Ctrl+Shift+S to commit the changes to the database.

Click Yes when asked whether you want to save. lllll

Entering Data

Entering Data in SQL Server Tables Using Visual Studio While typing your data, look to
])))) the table’s leftmost area in the

Now that you have created all your tables and relationships, you'll start inserting data in table data grid, and you'll see
your tables and verifying that your constraints ensure the data integrity of your database. a small pencil icon, a star, or a
Let's start by adding data to all tables. You'll first add rows to the Color table. small black triangle. The pencil

indicates you're modifying the
row. The star indicates a new

. gle indicates the current row.
1. To start entering rows in the Color table, right-click the Color table in Database Explorer,

and select Show Table Data. Your designer surface should have a grid like the one shown lllll
in Figure 8-13.

Chapter 8: Managing the Data 159

,./Color: Query(jp..\CARTRACKER.MDF] | Formlub [Design] | Start Page |

| ColorlD ColarMarme detallic
* MULL MULL MULL

Empty Color table in the table data grid

Let's add the first color. Click the Color Name field, type Dark Blue, and then press the
Tab key to go to the next column. Type true in the Metallic field. Because that column
type is a bit, its values can be only either true or false because a bit type is a binary type.
When you're done, press the Tab key to go to the next row.

l l l Add three more car colors—Red, Silver, and Color: Query(m1...CARTRACKER.MDF)
p Black—and set Red as Metallic and the other ColorD Calorhlame Metallic
Don’t Add Data to
Identitv Col two colors as nonmetallic (that is, false). When ! Dark Blue True
entity Columns 1 1A ; Red True

For all columns you created you're done, the table should look like the one ; Silver False
as identity columns, don't type shown in Figure 8-14. ! Black False

. . (=3 MULL MULL MULL
the data .be/c/aubse the f/e/d;v;)// Add the data in Table 8-5 and Table 8-6 to the
automatica e generate .

Al 4 Make and CarType tables, respectively. Color table with four new rows of data

SQL Server 2005 Express Edition
whenever the row is created in

in an identity column, you will
not be allowed to do so. When GoodRoadster Germany
the cursor is in an identity col-

i . SmallCar France
umn, you'll see near the naviga-
tion bar at the bottom of the BigSUV USA
Table Designer that the cell is
read-only. ReliableCar Japan

l l l Data for the Make Table

Roadster 2
SuvV 5
Hatchback 5
Sedan 4
Coupe 2

Data for the CarType Table

You might not have realized that by giving a type to your data, you actually added data

integrity verification to your database. Try modifying one of the Color rows by changing Youlcanes

the Metallic column to Helloworld instead of true or false. You'll get an error message tell- ‘ab'te "IV“
controls

ing you that the Metallic field is of type Boolean.

To show how data integrity is preserved using the foreign key constraints, you'll add two
Listing rows. You will enter more rows when using your Windows Forms application.

Right-click the Listing table, select Show Table Data, and add the two rows shown in
Table 8-7.

ColorID MakelD CarTypelD DateSeen Year Price Cylinder EPGCity EPGHighway Notes

1 1 1 08/11/2008 2005 42500 6 240 http://www. 20 28 This is my
litwareinc.com/ dream car, follow
regularly.
4 3 2 07/30/2008 2003 39775 8 340 http://www. 10 15 Too much gas
cpandl.com/

Data for the Listing Table

777

SQL and T-SQL
Documentation

If you want more information
about SQL and T-SQL, you

can read the SQL Server 2005
Express Edition documenta-
tion at http://msdn2.microsoft.
com/en-us/library/ms165706.
aspx. The SQL Server 2005
Express Edition documentation
is designed to help you answer
most questions you might have,
but it might also refer you to
the SQL Server 2005 documen-
tation. You can download the
SQL Server 2005 documentation
at http://msdn2.microsoft.com/
en-us/sqlserver/bb428874.aspx.

7m77.

You'll now verify that one of your foreign key constraints is working correctly. Open the
Make table by right-clicking the Make table and selecting Show Table Data.

Let's try to delete the first row by clicking the leftmost field where the pencil usually
appears. The row should be selected, and all the fields should be blue. Right-click, and
select Delete.

A dialog box should appear inquiring whether you really want to delete the row. Click Yes.

You should receive the following dialog box error message stating that the row was not
deleted because of the foreign key constraint: "Error Message: The DELETE statement
conflicted with the REFERENCE constraint ‘FK_Listing_Make.” This statement affirms why
the foreign key constraint was created, which was to avoid orphaned rows. Figure 8-15
depicts what the error dialog box looks like and what kind of information is provided to
help you debug the problem, if necessary. In this case, it's not a problem but a feature of
your creation!

Microsoft Wisual Basic 2008 Express Edition 2=

{ "_"I Mo rows were deleted,

A problem occurred attempting to delete row 1,
Error Source: Met SglClient Data Provider,
Error bessage: The DELETE staternent conflicted with the REFEREMCE
constraint "FE_Listing_Make". The conflict occurred in database
"CAUSERSVPPELLAMDNDOCURENTSWISUAL STUDIO
2008 PROJECTSNCARTRACKERNCARTRACKERNCARTRACKER.MDF",
table "dbo.Listing”, colurn 'hakelD’,
The statement has been terminated.

Correct the errors and atternpt to delete the row again or press ESC to
cancel the change(s),

Error dialog box showing the foreign key
relationship preventing the deletion of a row
from the Make table

[ok][Hep

Click OK to exit this dialog box.

Test your other constraints related to the Listing table by trying to delete the first row of
the CarType table. You should receive the same error message.

Now that you have all your domain tables loaded with some data, you'll learn to use the

database in a Windows Forms application. You'll learn about ADO.NET, about data binding
with Windows Forms controls, and about LINQ.

'Yy /4

What Are ADO.NET, Data Binding, and LINQ?

You rarely enter all data manually using Visual Studio. You typically let the user do it, or
you do it through an application. You can also either import data from another source or
create the new data using SQL scripts, but those are more advanced concepts that will not
be covered in this book.

This section will focus on how to build Windows applications that can connect to and
receive data from a SQL Server 2005 Express Edition database using ADO.NET and LINQ on
datasets. The following is a formal, official definition of ADO.NET from the MSDN online
library:

ADO.NET provides consistent access to data sources, such as Microsoft SQL Server, as well

as data sources exposed through OLE DB and XML. Data-sharing consumer applications can

use ADO.NET to connect to these data sources and retrieve, manipulate, and update data.

ADO.NET cleanly factors data access from data manipulation into discrete components that
can be used separately or in tandem. ADO.NET includes .NET Framework data providers
for connecting to a database, executing commands, and retrieving results. Those results are
either processed directly or placed in an ADO.NET DataSet object in order to be exposed

to the user in an ad-hoc manner, combined with data from multiple sources, or remoted
between tiers. The ADO.NET DataSet object can also be used independently of a .NET
Framework data provider to manage data local to the application or sourced from XML.

The ADO.NET classes are found in System.Data.dll and are integrated with the XML classes
found in System.Xml.dll. When compiling code that uses the System.Data namespace, ref-
erence both System.Data.dll and System.Xml.dll.

Visual Basic 2008 Express
Edition allows you to work with
Microsoft Access databases, but
working with SQL Server 2005

I've presented the long and formal definition of ADO.NET because it contains elements

you'll learn about while working with the CarTracker application. | also chose it because | Express Edition gives you all the
. s enterprise-quality benefits of
want you to refer to it whenever you're working with ADO.NET. Here is a less formal defini- SQL Server 2005, with the only

tion that | think summarizes what ADO.NET is all about: ADO.NET is the .NET Framework way :';":::e“:e being a reducediEu,
of accessing and programmatically manipulating databases or data using XML sources.

With ADO.NET 2.0 came new ways of accessing data from different sources. In Visual
Basic 2008 Express Edition, you are limited to the following data sources: databases (SQL

Server Express and Microsoft Access databases), Web services, and custom objects. It is
much easier (that is, there is less code) to manipulate data in ADO.NET 2.0, especially when
using all the tools included in Visual Studio 2008. Many new wizards and other tools make
the experience of working with databases a pleasant one. Visual Studio 2008 covers numer-
ous common scenarios with its tools and wizards, but it's also very powerful when used
programmatically without using the visual tools. You will learn the basics in this book, but
nothing is preventing you from learning more about data binding and ADO.NET and from
unleashing powerful applications.

With LINQ you can create queries within your Visual Basic code and query and update all
kinds of data (arrays, lists, XML, Web services, SQL databases) easily. Here's a formal defini-
tion of LINQ, and then let’s jump into the code:

Language-Integrated Query (LINQ) adds query capabilities to Visual Basic and provides

simple and powerful capabilities when you work with all kinds of data. Rather than sending

a query to a database to be processed, or working with different query syntax for each type

of data that you are searching, LINQ introduces queries as part of the Visual Basic language.

It uses a unified syntax regardless of the type of data.

LINQ enables you to query data from a SQL Server database, XML, in-memory arrays and
collections, ADO.NET datasets, or any other remote or local data source that supports LINQ.
You can do all this with common Visual Basic language elements. Because your queries

are written in the Visual Basic language, your query results are returned as strongly typed
objects. These objects support IntelliSense, which enables you to write code faster and catch
errors in your queries at compile time instead of at run time. LINQ queries can be used as
the source of additional queries to refine results. They can also be bound to controls so that
users can easily view and modify your query results.

We'll return to the topic of LINQ later in the implementation of the CarTracker applica-
tion, but before proceeding any further, let’s talk more about CarTracker. The main goal of the
application is to track car ads over the Internet. Because you already have your database ready
to go, you now need to consider what will be included in this application. What you need is
simply a way of displaying the ads, adding new ads, modifying and deleting existing ads, and
searching through the ads using a series of drop-down boxes that help you narrow your search
based on certain criteria. These search criteria will come directly from the domain tables (in
other words, separate drop-down controls for the car type, color, make, and so forth).

When using drop-down controls or any other controls with data that you know exists
in your database, you don't want to populate the data by hand. You want to use the data-
binding capabilities of a control. Data binding is an easy and transparent way to read and
write data and link a control on a Windows form to a data source in your application.

ADO.NET takes care of a great deal of activity behind the scenes (it's even better in .NET
Framework 3.5), as well as managing the connection to the database. Managing the connec-
tion doesn’t stop at opening and closing the connection; it also concerns itself with finding
the database with which you're trying to connect. When a connection is opened, it means
your application can talk to the database through ADO.NET method calls. ADO.NET manages
all exchanges (send/receive) of data between your application and the database for you.
ADO.NET also manages the data through diverse mechanisms: read-only forward navigation,
navigation in any direction with read-write, field evaluation, and so forth. And the beauty of
it is that you usually don’t have to write a lot of code to enjoy those nice features.

Developing the CarTracker Application

You'll now start developing the CarTracker application. First you need to create a dataset
that will provide you with all the data binding you need for the CarTracker application. Now
that your tables are established, you can configure the dataset with all the elements you've
just added to your database.

Before creating a dataset, though, you must learn what a dataset is. A dataset is an
in-memory representation of one or more tables and is used to store the rows you retrieve
that match the query you sent to the database. You can then add, delete, or update rows in
memory. When the user is done, you can submit, save, or commit the changes to the data-
base. In a few steps, you'll see the CarTrackerDataSet.xsd file, which is called an XML schema
definition file. The .xsd file ensures that the data will be structured and respect the schema.
You'll use this file later in the project when | discuss data binding.

To create a dataset, you'll learn to use the Data Sources window. This window gives you
access to all the data sources you have configured in your application. Figure 8-16 shows
where the Data Sources window is located. If you don't see the Data Sources window, you
can access it by clicking the Data menu and clicking Show Data Sources. If Show Data
Sources does not appear on the Data menu, be sure you have closed all the CarTracker table
data grids and Form1 is visible.

Not all Windows Forms controls
are “data-binding-aware.” When

they are aware, they have a
DataBindings property.

;"fﬁva'“t‘a‘ Sources ~ 7 Xl

i e Y

Your project currently has no data sources
associated with it, Add a new data source, then
data-bind iterns by dragging frorm this window

Add Mewy Data Source..,

|lf‘_3_ Salutio n_E>-<p-Ior:ar |_j Data Sources

The Data Sources window

The Data Sources window might
end up somewhere else in your

IDE. Because your IDE is entirely
customizable to your liking, you

can have your windows and tabs
appear wherever you think they
are most productive for you.

TO CREATE A DATASET

In the Data Sources window, click the Add New Data Source link, or click the Add New
Data Source button in the toolbar. The Data Source Configuration Wizard appears.

The first page of the Data Source Configuration Wizard prompts you to choose the data
source type you want to create. You can choose a database, a Web service, or one of
your objects. You've just built a database for the CarTracker application, so choose that
data source type. Select Database, and then click Next.

On the next page, you will choose your data connection. You should see the CarTracker
connection string prepopulating the Connection field. The reason is simple: when you
created the CarTracker SQL Server Express Edition database in your project, a data con-
nection was created for you. The connection string was added to your application as

an application setting. (If you right-click your project name and select Properties and
then the Settings tab, you will see the connection string entry. You can also expand the
bottom of the dialog box to see what the connection string looks like.) This connection
string defines how your application will connect to the database. Having the connection
string in your application configuration file is actually a best practice. It gives you the
advantage of only modifying the file and restarting the application without recompila-
tion so as to automatically pick up the changes in your connection string and connect to
that new location.

The application configuration is stored in an XML file named using the application’s
executable name with .config added at the end of the executable filename. In our appli-
cation, the file is named CarTracker.exe.config, although you see only app.config while
working in Visual Studio.

Click Next on the Choose Your Data Connection page.

On the next page, you'll select all the tables from the database that will be in your data-
set, and you'll name your dataset. In your case, you will need all the tables, so expand the
Tables node, and select all the tables. Leave the dataset name set to CarTrackerDataSet,
and then click Finish.

The result of your dataset configuration is an .xsd file, or an XML schema document, and it
will define the internal structure of your dataset. Remember that a dataset is an in-memory

representation of one or more tables from your database. ADO.NET will use this schema
file when working with your application. When running the application, the user will be
able to add, delete, or modify rows in the dataset (in the computer’'s memory). The changes
will remain in memory until the user commits the changes to the database, which in our
example is the CarTracker.mdf file.

6. In Solution Explorer, double-click the .xsd file named CarTrackerDataSet.xsd. As shown in
Figure 8-17, the result of the dataset creation is similar to the database diagram you cre-
ated earlier. Your diagram might be different depending on your screen resolution and

how you customized your IDE.

B ListingTableAdapter

Fill,GetData ()

e
ListingID i 2 CarTypelD
ColorlD CarTypeMarme
MakelD MNumberOfDoars
CarTypelD B CarTypeTableAdapter
Dateseen
Year = 2 Fill,GetData ()
Price
Cylinder fe il
HP ¥ ColodD
LRL ColorMarme =
EPGCity P detallic
EPGHighuay = ‘@ ColorTableAdapter [7]

U Fill,GetData ()

.. Make

7 MakelD
kakeMarme
Country

‘B MakeTableAdapter 7] £

Fill,GetData ()

Figure 8-17
Graphical representation of the CarTracker dataset

There are some notable differences, however. You'll see the same columns you have cre-
ated in your physical database, but at the bottom of each table you will see some meth-
ods: Fill and GetData(). These methods are particular to the dataset, and the

Chapter 8: Managing the Data 167

| Data Sources -0 x

@ %

=1 CarTrackerDataZet
@[] CarType
= Calor

g ColorD

..... abe| ColorMame
ﬂ etallic
@[] Listing
= Listing

.l ListingID
;...m ColorID
| MakelD
2| CarTypelD
.10 DateSeen
;...ahc Year
ﬂ Price
=] Cylinder
..... 123] HP
k] URL
.l EPGCity
é...m EPGHighuway
.labe] Motes
-] Make

View of the Color and Listing
dataset tables in the Data Sources
window

ADO.NET-generated code by Visual Studio will use them to bind data to your Windows
Forms controls—controls that do not exist yet!

Return to the Data Sources window, and expand the dataset tables. You'll see the in-
memory representation of your tables, and you'll also see that each column has a small
icon that gives you its type. These icons might look familiar to you because they are
similar to the controls in the Toolbox. Refer to Figure 8-18 for a quick glance at the Color
and Listing dataset tables and their column types.

Close the graphical representation of your dataset by clicking the X in the corner of the
designer surface. Depending on your screen resolution, you might have moved the boxes
around; if that's the case, when you try to close this window, you'll be asked to save it.
You can click Yes if you want to preserve where on the design surface the data tables

are located. This is only design-time information that will be saved because you didn't
change anything else.

In Solution Explorer, double-click your Form1.vb file to open the designer surface for Forml.

In the Data Sources window, select the Listing node in your dataset, and click the drop-
down arrow that's next to the word Listing. You will see two choices: DataGridView and
Details. DataGridView brings all the dataset fields into a table or grid format with mul-
tiple rows, while Details brings the dataset fields in one row at a time with all fields as
individual controls. For our example, select Details.

You'll also see that each member of the dataset has the same drop-down arrow, which
means you can change which controls will be dropped onto the form when it is dragged.
Choosing controls prior to dragging the dataset table onto the form prevents you from
having to lay out the Ul piece by piece.

Change ColorID, MakelD, and CarTypelD to the ComboBox type by clicking the drop-
down arrow next to each column and selecting ComboBox.

Select the Listing node by clicking it, and then drag it near the top-left corner of the
designer surface on Form1.

You'll now modify the form size like you did in previous chapters by modifying the
form’s Size property. Change the form size so that its width is 450 pixels and its height is
550 pixels.

Move all the controls so that the first label is almost in the top-left corner just beneath

the tool strip. See Figure 8-19 to determine how the controls should approximately be the controls depending on your
screen resolution.

You may need to scroll to see all

placed.
w3 Forml
4 4 |0 of {0} | b M |4 X H
Listing [D:
Calor ID: -
Make ID: -
Car Type ID: 5

Date Seer; Saturday |, December 15, 2007 [~
‘Year:

Price:

Cylinder:

HF:

URL:

EPGCity:

EPGHighway:

Motes:

Resized CarTracker form after moving all the controls

As you can see, many things have just happened. Let's start by looking at the designer
surface. All the fields from the dataset have been added as controls, and labels were also
added based on the name of the field in the dataset. This feature is called Smart Captions.
Visual Studio uses Pascal or camel casing as a mechanism to insert a space in labels when
using Smart Captions. When you drop the dataset fields onto the form, the Smart Captions
feature looks at each field's casing. When it finds an uppercase letter or an underscore (_)
character following a lowercase letter, it inserts or replaces the underscore with a space.
You can see an exception to this rule in the EPGCity and EPGHighway fields. When you use
uppercase letters for an acronym, for example, Visual Studio cannot distinguish that these
are two words and therefore doesn't split them apart. You'll have to split these two fields
manually.

777

When working with local database files, understand that they are treated like any other con-
tent file. For desktop projects, this means that by default the database file will be copied to the
output folder (that is, bin) each time the project is built. After pressing F5, here’s what your file
structure will look like on disk:

Know Your Files

CarTracker\CarTracker.mdf
CarTracker\Form1.vb
CarTracker\Bin\Debug\CarTracker.mdf
CarTracker\Bin\Debug\CarTracker.exe

At design time, the data tools and wizards use CarTracker\CarTracker.mdf. At run time, the
application uses the database under the bin\debug folder. As a result of the copy operation, many
people assume the application did not save the data to the database file because two copies of
the data file are involved. This also happens when looking at schema/data through Database
Explorer. The tools are using the copy in the project folder and not the file in the bin\debug folder.

The following are a few ways to work around this copy behavior.

First, if you select your database file in Solution Explorer; you will see a property called Copy
to Output Directory in the Properties window. By default, it is set to Copy Always, which means
data files in the project folder will be copied to the bin\debug folder on each build, thus overwrit-
ing the existing data files, if any. You can set this property to Do Not Copy and then manually
place a copy of the data file in the bin\debug folder. In this way, on subsequent builds, the project
system leaves the database file in the bin\debug folder and doesn't try to overwrite it with the
one from the project. The downside to this method is that you still have two copies. Therefore,
after you modify the database file using the application, if you want to make those same changes
within the project, you need to copy the changes to the project manually, and vice versa.

The other approach is to leave the data file outside the project and create a connection to it
in Database Explorer. When the IDE asks you to bring the file into the project, simply click No.
This way, both the design time and the run time will be using the same data file. The downside
to this method is that the path in the connection string will be hard-coded, and it will therefore
be harder to share the project and deploy the application. Before deploying the application,
make sure to replace the full path in the settings with a relative path. If you want to read more
about the relative path versus the full path (plus a bit more about this copy behavior), read the
following article: http://blogs.msdn.com/smartclientdata/archive/2005/08/26/456886.aspx.
You'll see that | took portions of that article and modified them so that they fit our application.

7”77

You will also notice that a tool strip has been added that contains almost the same but-

tons you used while working with the database Table Designer.

Read the “Know Your Files” sidebar on the previous page. With this copy behavior in
mind, | suggest you use the first approach even though you'll have to perform some
manual steps. If you want to debug your application from within Visual Studio, it's prefer-
able to use this solution, or you will not be able to see the changes applied to your data-
base file. The database file will always return to the initial one from your project, which is

similar to resetting the whole database to what it is in Visual Studio.

Select the CarTracker.mdf database file in Solution Explorer, and change the Copy to

Output Directory property to Do Not Copy in the Properties window.

Press F5 to build and run your application. You'll get an exception message because the

file won't be copied in the bin\debug directory. Also, on the form
load event when your code tries to fill the dataset, it won't find the
database at the place specified by the connection string. Therefore,
you get a SQLException stating that it's not able to attach to the
database. Click the Stop Debugging button or press Shift+F5 to stop
debugging.

Using Windows Explorer, go into your project directory (it should be
located at Users\<yourusername>\Documents\Visual Studio 2008\
Projects\CarTracker\CarTracker\), and copy the .mdf and .Idf files into
the bin\debug directory under CarTracker. If you're not able to copy
the files because Visual Studio still has them open, save all your files,
and then close the project. Then copy the two files mentioned earlier,
and re-open your project.

Now press F5 to build and run your application again.

You should see the two records you've manually inserted into the
Listing table. You should be able to navigate using the tool strip and

also modify, insert, and delete a record. Figure 8-20 shows a snapshot
of your CarTracker application at run time.

Change the URL of the row at position 1 to end with .net instead
of .com.

45 Forml
1

Listing D
Color 1D
Make [D:
Car Type ID:
Date Seen:
‘ear
Price:
Cylinder:
HF:
URL:
EPGCity:
EPGHighway:

Motes:

af2 | b M |4k =

1 -

1 -

1 -

Thursday . August 11,2008 [E=

2008

42500.0000

g

240

hittp: 4 A libwarein, com,
20

28

This is my dream car, follow regularly

[= &[]

Execution of the CarTracker application

If you want the same data in
Visual Studio as you have when
executing the application in
debug mode, you must close
your project completely. Using
Windows Explorer, copy the .mdf
and .ldf files from the bin\debug
folder to the project folder. When
you reopen your project, the
database will now contain the
same content.

Suppose you then want to
modify the structure of your
database, such as adding a
column to a table. If you don't
want to lose the data within the
bin\debug database files, you
must copy them to the project
folder before you modify the
table structure. When done with
the modifications, you simply
copy both the .mdf and .Idf files
back to the bin\debug folder. Of
course, if your application needs
those new database changes, you
will also have to modify the data-
set, but that process is beyond
the scope of this book.

21. After changing the URL for the record, click the disk icon to commit the changes to the

database.

22.Close the CarTracker application, and restart it by pressing F5. You should now see the

first row with the modified URL ending in .net. Close the application again.

23.To verify that you are working with design-time and run-time versions of the CarTracker

database, open the Listing table, and select Show Table Data in Database Explorer. The
first row should still contain a URL column ending in .com and not in .net.

Point proven! The database file in Visual Studio is now decoupled from the one your
application is using at run time. Read the note in the left margin to learn how to make
the data the same in both the design-time and run-time versions.

Using the Component Tray

When you dragged the Listing dataset table to the designer surface, you probably saw that

five items were added in the gray area below the designer surface. This section of the designer
surface is called the component tray and is the section Visual Studio uses for nonvisual controls.
In your case, it added an instance of the CarTracker dataset, a Listing table adapter, a Listing
binding source, a table adapter manager, and finally a Listing binding navigator.

I'll describe several of these individually:

Binding source You can think of a binding source as a “broker” or a layer of indirec-
tion. You can also think of it as an intermediary between a data-bound control on your
form and a data source, such as a dataset. A binding source provides currency man-
agement and notification services (events). The binding source has many methods to
facilitate, such as sorting, filtering, navigating, and editing of data from its data-bound
controls to the data source. It's also linked tightly to the next component: the binding
navigator. When you see a binding navigator, you're assured of getting a binding source.

Binding navigator The binding navigator is a means to add navigation and data
manipulation. It has a Ul component or, more specifically, a tool strip with buttons to
facilitate the functionality provided by the binding source.

Typed dataset Although you know what a dataset is, you might not know that it's a
strongly typed object. It contains data tables of the DataTable type that constitute the

172

Microsoft Visual Basic 2008 Express Edition: Build a Program Now!

in-memory representation of your database tables. These data tables also have a special
data adapter called the table adapter. There is a table adapter for each data table.

Table adapter A table adapter is a data access object. It connects to the database (for
example, SQL Server 2005 Express Edition), executes the queries, and fills a data table
with data when it returns from SQL Server. Therefore, it's the central point for all data
access on an individual table. There is one table adapter per table in your data source. A
table adapter can have more than one SELECT query.

Table adapter manager The TableAdapterManager class has been added in .NET 3.5
to help you maintain referential integrity to your typed datasets. It adds logic to maintain
it and lets you specify in which order the CRUD (create, read, update, delete) transactions
are happening. For instance, you can say that the update order is insert-update-delete

or update-insert-delete. It also helps you to have a single point of update, so instead of
calling the update method on each table adapter, you just have to call the TableAdapater-
Manager.UpdateAll method to save the changes to the database.

How Do | Get More Meaningful Information on My Form?

Let's return to our CarTracker project. As you can see when you run the application, the
ColorlD, MakelD, and CarTypelD combo boxes are there, but they are displaying the ID and
not the name associated with the ID. This is not helpful for the user because an ID doesn't
have any meaning to users, and they might not be able to easily add or modify rows without
having a human-readable format for those columns. Consequently, you need to make sure
the data is displayed in a humanly readable way and that the ID is stored in the row when-
ever the user modifies the information.

There's an easy way to accomplish this, which you will do now for your three combo
boxes.

TO DATA BIND WITH DOMAIN TABLES

In the Data Sources window, select the Color table from the dataset, drag it onto the
form’s designer surface over the ColorlD combo box, and drop it.

ComboBox Tasks
Use data bound items

Data Binding Mode

Data Source ColorBindingSource lz‘
Display Member | ColorMarne lz‘
Walue Member | ColordD lz‘

Selected Walue | ListingBindingSource - [IZ‘
Add Queny.,

Preview Data...

ColorlD combo box Smart Tag infor-
mation showing the Data Binding
Mode information box

You'll see that another table adapter (ColorTableAdapter) and another binding source
(ColorBindingSource) were added to the component tray. If you go to the ColorID combo
box and click the Smart Tag triangle, you'll see the Data Binding Mode information box
appear, as shown in Figure 8-21. You'll notice that your drag-and-drop action bound the
combo box control with the ColorBindingSource. Because of this action, whenever the
combo box is displayed, it will show the color names instead of ColorID. When the user
picks a color from the combo box, the associated value member that will be used in the
row will still be the ColorlID, specifically the ColorID associated with the ColorName.
Wonderful, isn't it? And we didn't use any lines of code.

Repeat the same process for the Make and CarType dataset tables and the corresponding
MakelD and CarTypelD combo boxes.

Build and run your application, and then look at each combo box. You now have real
color names and not merely ColorIDs; the same is true for CarType and Make. The combo
boxes are also populated with all the values coming from those tables and not simply the
value for that specific row. Click the down arrow, and you'll see all other potential values.
Close the application.

On the form, remove the /D part from the ColorID, MakelD, and CarTypelD labels.

You will now enlarge the Notes field by making it a multiline text box. Select the Notes
text box, and change the Multiline property to true. Also change the MaxLength property
to 250, the Size:Height property to 50, and the Size:Width property to 250.

Delete the ListingID text box and its label.

Size and reposition the controls on the form so that the form resembles the one shown
in Figure 8-22; it does not need to be an exact duplicate. It will be good practice to bring
back Ul design concepts from Chapter 5, “Using Rapid Application Development Tools
with Visual Basic 2008,” and also good preparation for Chapter 9, “Building Your Own
Weather Tracker Application.” Change the Text property of the form to Car Tracker.

In Solution Explorer, rename forml.vb to Main.vb.

v Car Tracker |
4 4|0 of (01| b M | ar =

Color: + Make: - Car Type:

Date Seen: Saturday | December 15, 2007 @~ URL

“ear Frice:
Cylinder: HF:
Mates: EPG City:

EPG Highway:

New visual aspects of the CarTracker application

Select the form, and change the BackColor property to GradientActiveCaption.

Now add a tool strip container to the form like you did in Chapter 6, “Modifying Your
Web Browser.” Set the Dock property to fill the form. In the Smart Tag menu, select Re-
Parent Controls to place all your tool strips on the top panel and all your other controls
in your content panel. If necessary, use the Document Outline window to view and adjust
the hierarchy of objects on the form.

Everything is nearly complete for this application, but the research capabilities are lack-
ing. Currently, the only way to search is to scan through all the rows until you find the correct
one. This is not difficult now because you have only two rows in your CarTracker database.
Yet, if you had 500 rows, the Scan method would not be effective at all! Therefore, you'll
implement search capabilities by adding queries to your application by using the Dataset
Designer. That's where we will introduce the LINQ to Datasets capabilities. You will do one
search capability with plain ADO.NET and two with LINQ to Datasets. After that, you will add
a bit more functionality to your application using LINQ.

TO ADD QUERIES TO YOUR APPLICATION

3' -] I:...' -

e Add Query...

* ListingID s I
CalorD sl I
MakelD & | Cut 1
CarTypelD 53| Copy |
[DateSeen Daste
- e

e.ar >(Delete
Price
Cylinder Renarne
HP Autosize
URL _3 Preview Data...
EPGCi -
|.ty [Z] | Wiew Code
EPGHighuway i
= iz Properties
| = P

S Fill,GetData ()

Adding new queries to a table adapter

ke

B

Let's start by adding the search capability to our application by using ADO.NET. In the
Data Sources window, select CarTrackerDataSet. Right-click, and select Edit DataSet with
Designer.

Select the Listing data table, and then select the ListingTableAdapter section at the bot-
tom of the data table.

When you look at the Properties window, you'll see that four types of queries were
automatically generated by Visual Studio: SelectCommand, InsertCommand, Delete-
Commeand, and UpdateCommand. They are the queries that help you have a fully
workable application without writing a single line of code. When you read about table
adapters earlier, you learned that you can have multiple queries with a table adapter
because it is the central point of data access. You will thus add search capabilities to your
application by adding queries to the table adapters and by using elements from the Ul as
parameters to your queries. You will first add the ability to search for listings that have a
certain color.

Right-click the ListingTableAdapter section, and select Add Query..., as shown in
Figure 8-23.

This brings you to the TableAdapter Query Configuration Wizard. This wizard will help
you add another SELECT query that will use parameters to refine your search. You can
also create a SELECT query and turn it into a stored procedure or use an existing stored
procedure. As its name implies, a stored procedure is stored in SQL Server and contains
SQL statements, along with other programming constructs, that use T-SQL.

A new feature in SQL Server 2005 Express Edition is that stored procedures can also

be coded in managed languages, such as C# and Visual Basic. Stored procedures are
executed on the server. This approach is usually considered safer because no SQL code

is included in your application and everything executes on a separate machine, usually

in a different physical location. It used to be a bit more performant, but with the newest
ADO.NET, the performance argument is not as big as the safety argument. Since you're
using SQL Server 2005 Express Edition, this will be of no concern because SQL Server and
the application are executed on the same machine.

Select Use SQL Statements, and click Next. When asked which type of SQL query you
want to use, choose SELECT Which Return Rows, and then click Next. Note that you could
have added any SQL query type you wanted.

You are now presented with an edit window in which to add the SQL statement that will
perform a search for all the listings containing a particular color. Refer to Figure 8-24 to

see the SQL command edit window. Click the Query Builder... button to get a visual view
of the query.

-

Tableddapter Query Configuration Wizard wE=]

Specify a SQL SELECT statem ent A Iy
The SELECT staternent will be used by the query | =

Type your S0L staterment or use the Query Builder to construct it YWhat data should be loaded into the table?
What data should the table load?

SELECT ListingID, ColorID, MakelD, CarTypelD, DateSeen, Year, Price, Cylinder, HP, URL, EPGCity, EPGHighwvay,
Motes FROM dbolListing

| CQuery Builder... |

% Presious | | [t =] i Finish] [Cancel |

SQL command edit window ready to customize the user's search

You will now add the Color table to the diagram so that you'll be able to base your
search on a particular color. To add the Color table, simply right-click in the diagram area,
and select Add Table.... The Add Table dialog box appears, as shown in Figure 8-25. Select

the Color table, and click the Add button. When the Color table has been added to the
diagram, click the Close button.

-

Query Builder 7=
Listing =] | 3
o nlurmnsg -
Tables |Views | Functions | Synonyrns
CarType
Listin g
4 |2
= Make s ———
Filter 185
» (d
1 | — .2
SELECT , EPGHighway, Motes
FROM
| Refresh | [add][close
4 |
4 4 |0 of 0 | bk b

= am

Figure 8-25
The Add Table dialog box

The % symbol is the wildcard
character in SQL, and it can mean

anything. For exampiC. 7. In the SQL code pane of Query Builder, append the following SQL code that will help in

previous WHERE clause, it means
return something that has a the filtering process:
color similar to the colorname

parameter.

WHERE (Color.ColorName LIKE ‘%‘ + @colorname + ‘%‘)

178 Microsoft Visual Basic 2008 Express Edition: Build a Program Now!

8. Before you proceed with your new query, make sure it will give you the results you're
expecting. Click the Execute Query button to display the Query Parameters dialog box, as
shown in Figure 8-26.

To run this query, enterwalues for its parameters,

Marme Walue

@colornarme ULL
K4

ok J[conce

Figure 8-26
Query Parameters dialog box with prompt to enter a color name value

9. Try replacing the word NULL with blue, and then click OK. The Results pane of Query
Builder should display only one row. Using the word black should return the black car
row. Simply enter b, and you should get both the blue and the black rows. Once you're
satisfied with your query, click OK in Query Builder.

10. On the Specify a SQL SELECT Statement page of the wizard, click Next. It's time to add
your query to the application.

11. A page appears that prompts you to name the methods that your query will gener-
ate. After you create the query, those methods will be available from the Listing table
adapter. Refer to Figure 8-27 to view this screen, which contains the two new method
names. For both names you basically need to add what your filter is. In your case, you
can add ColorName since you filtered by that name in your WHERE clause. When done,
click Next.

Chapter 8: Managing the Data 179

-

Tableddapter Query Configuration Wizard wE=]

Choose Methods to Generate N 1

The TableAdapter methods load and save data between your application and the database,

Which methods do you want to add to the TableAdapter?

|| Fill a DataTable

Creates a method that takes a DataTable or DataSet as a parameter and executes the SQL staterment or SELECT stored
procedure entered on the previous page.

Method name: FillByColorMame

|¥| Return a DataTable

Creates a method that returns a new DataTable filled with the results of the SQL statement or SELECT stored
procedure entered on the previous page,

Method name: GetDataByColorMarme

I < Presious H [est =] | Finish | | Cancel |

Use this page of the Query Configuration Wizard to rename the methods used to increase search capabilities.

After processing for a few seconds, your computer should come back with a results page
informing you that your SELECT statement and your new Fill and Get methods are ready
to use. Click the Finish button.

Look at the table adapter section of the Listing data table. Your new methods will be
added there.

In Solution Explorer, double-click Main.vb. Go to the component tray, click the Listing-
TableAdapter Smart Tag, and select Add Query.... You'll see a Search Criteria Builder
dialog box that will prompt you to create a new query or pick an existing one. Since you
just built a new method, you merely need to select one. Select the Existing Query Name
option, and then select FillByColorName, as shown in Figure 8-28.

Search Criteria Builder [®E=R]

Choose an existing query or enter a new query below, & ToolStrip will be added to the form
o run the query, To edit an existing query or use stored procedures use the Configure
command on the Tableddapter in the DataSet Designer,

Select data source table:

CarTrackerDataSet.Listing o

Select a parameterized query to load data:

() Mewr query narne: FillBy
@ Existing query name: |FillByCalarMame(colarnarme) -
ery Text:

SELECT Listing.ListingID, Listing.ColorID, Listing.MakelD, Listing. CarTypellD, Listing, =
Listing.EPGCity, Listing EPGHighway, Listing.MNotes

FROM Listing INMER JOIMN
Color OM Listing.ColorID = Color.ColarlD

WYHERE (Color.ColorMame LIKE "% + @colornarme + 967

<[, i . r
Sample: SELECT ColumnMamel, ColurmnMame2 FROM TableMare
WHERE ColurmnMamel = @PararmeterMarme

[Ok] | Cancel |

Search Criteria Builder with the FillByColorName method selected

Click the OK button. You'll see that a tool strip has been placed at the top of the form
with a search button that will call your method when you click it, thereby giving you a
way of searching by certain criteria. This was accomplished by typing only the WHERE
clause for your specific query.

Extend the top panel by clicking the grip and pulling it down so that it becomes two tool
strips wide.

Make sure your application looks like the one shown in Figure 8-29. Press F5 to see the
results of your work. Type blue in the ColorName tool strip, and click FillByColorName to
see whether it returns blue color car listings.

-

#5' CarTracker = 'EI =

1 ofl X d
ColorMame: bl FillByColorMarme
Color: Drark Blue + Make: GoodRoadster - Car Type: Roadster -

Date Seen: Thursday . August 11,2008 [+ UBL: http: /v iwareine, net?

Year 2005 Frice: 42500.00 EFG City: 20

EPG Highway 28
Cylinder: 6 HF: 240 1ghay.

Motes: Thiz iz my dream car, follow regularly

CarTracker application screen with the filter by color name

You will now add the two other buttons to the tool strip to narrow down the number of
rows: one for the car type and one for the make. Add two tool strip labels, two tool strip
text boxes, and two tool strip buttons. You can find the magnifier image in the Chapter6
folder of the companion content. Set the Image property to the file by browsing to that
Images folder in Chapter6. Figure 8-30 shows what you should have when you're done.
Make sure to name your variables appropriately because you'll need them in the event
handlers in a minute.

E Filter By Colar - Filter By Make o Filter By Car Type >d-

Tool strip after you're done adding Filter By Make and Filter By CarType

Using LINQ

How you use LINQ depends on the type of data you are playing with. When used with
strongly typed datasets (the ones we have), LINQ queries in code almost look like SQL. Let’s

look at the structure of a query using LINQ. MSDN states that a LINQ query, often referred
to as a query expression, consists of a combination of query clauses identifying the data
sources and iteration variables for the query. A query expression can also include instructions
for sorting, filtering, grouping, and joining or can include calculations to apply to the source
data. Query expression syntax resembles the syntax of SQL; therefore, you might find much
of the syntax familiar. The following query gives us the customer names for all customers
who are in the United States:

Dim queryResults = From cust In customers _
Where cust.Country = “USA”
Select cust.CompanyName, cust.Country

Now we'll use LINQ in CarTracker.

TO USE A LINQ QUERY
Double-click the tool strip button for the Make filter, and insert the following code:

Dim filteredByMake = From Listing In Me.CarTrackerDataSet.Listing _
Join Make In Me.CarTrackerDataSet.Make _
On Listing.MakeID Equals Make.MakeID _
Where Make.MakeName.ToLower() Like _
‘Y& Me.tstbFilterByMake.Text.ToLower() & “*“ _
Select Listing

Me.ListingBindingSource.DataSource = filteredByMake

This is essentially the same step you performed for the color filtering, except you didn't
add a query to the dataset; instead, you used LINQ to filter the results on the screen. In
reality, the dataset in memory still contains all the data, but you are displaying only the
rows that match one of your filters. That's nice!

I'll now explain what is happening. The LINQ query you just wrote is joining two tables
in your CarTracker dataset on the MakelD column and is also using the value in the tool
strip text box for comparison. Note that Like is very similar to the use of LIKE in the color
filter, except that the syntax is slightly different for the wildcard. Finally, you can assign
the result of your query (in other words, filteredByMake) to the DataSource property of

your binding source because it is a collection of Listing rows. Therefore you can simply
assign it to the data source in the same way you would do it without LINQ.

2. Now let's do the same for CarType by adding the following code to the Click event of the
tool strip button for the Filter By CarType text box:

Dim filteredByCarType = From Listing In Me.CarTrackerDataSet.Listing _
Join CarType In Me.CarTrackerDataSet.CarType _
On Listing.CarTypeID Equals CarType.CarTypeID _
Where CarType.CarTypeName.ToLower() Like _
“x & Me.tstbFilterByCarType.Text.ToLower() & “** _
Select Listing

Me.ListingBindingSource.DataSource = filteredByCarType

Figure 8-31 shows what you should have at the end of this chapter.

E L T ofL[b M| X H|
* Filter By Calor .p Filter By Make p Filter By Car Type su ﬂl

Saturday ., July 30,2008 [+ hittp: £ vy, cpandl.com/
2003 = 39775.00 City:
340

5 W - .

Figure 8-31
CarTracker application with all the filters

184 Microsoft Visual Basic 2008 Express Edition: Build a Program Now!

Test the application by adding new rows of data that have similar Make and CarType
values and colors so you can validate that your application works well. Note that you could
have created the same application by using LINQ to SQL. This book won't go into the details
of the implementation for LINQ to SQL, but if you want to learn more about it, please take a
look at the free video series at this Web site: http://www.myvbprof.com/2007_Version/LINQ_
to_SQL.aspx. You'll see that there are many similarities to what we have done in this chapter.
On the same Web site, you'll find another great video series talking about programming
with XML in Visual Basic 2008. You'll find another use of LINQ called LINQ to XML. Just note
that with LINQ you can use the query structure on many different collections of data. For
example, you could do a LINQ query on strings in a dictionary and then iterate through the
result with a For Each loop. LINQ is a wonderful and powerful new technology that will save
you time and lines of code and that will improve the readability of your code.

CarTracker is a simple application that you can probably modify to handle more informa-
tion, such as pictures of the cars. But there is nothing you can’t add by yourself now! Here's a
list of other tasks you can perform if you want to continue to work on this application:

Add validations for user input, such as making sure the year of the car is not greater than
the current year + 2.

Add pictures in the databases and on the form.

Add a sold check mark.

Add three forms to add data in the domain tables (CarType, Make, Color).

Add more information in the listing, such as contact information.

Make the URL clickable.

Save an ad as a text file.

NNy riIr117171i

That was a big chapter with a lot of material! Let's review what you've learned. You were
first introduced to databases and database concepts. You learned what constitutes a data-
base and what you usually find within a database. You learned about data integrity and how
it relates to primary keys and foreign keys.

You then used Visual Basic 2008 Express Edition to create a database and tables and
then populated them with some initial data using various tools in Visual Basic 2008 Express
Edition. You implemented all the foreign key relationships without leaving Visual Studio and
validated them as well.

After entering your data manually, you developed a sample CarTracker application that
lets a user easily enter data and that uses ADO.NET and data binding.

Lastly, you learned about the new components of ADO.NET 2.0 and how, with little or
no code, you can develop a fully working data-centric application. You've been introduced
only to a brief part of ADO.NET, because it's a vast subject. If you want to learn more, refer
to the code or samples on MSDN. A good place to begin is the samples for Visual Studio
2008. Pay particular attention to the topic of data access with ADO.NET and LINQ. Here’s the
link: http.//msdn2.microsoft.com/en-us/vbasic/bb466226.aspx?wt.slv=RightRail. Also refer to
the Windows Forms videos at the following link: http.//windowsclient.net/learn/videos.aspx.
At this location you'll find some data binding examples. Finally, look at the Learn Visual Basic
Web site; this site evolves over time and will provide you with additional sources for learning
data access using Visual Basic: http.//msdn2.microsoft.com/en-us/vbasic/ms789086.aspx?wt.
slv=RightRail.

In the next chapter, you will develop the final application of this book—the Weather
Tracker application. You'll learn new concepts such as deployment, consuming Web services,
user settings, and much more in a complete application with all the necessary validations.

186 Microsoft Visual Basic 2008 Express Edition: Build a Program Now!

Building Your Own
Weather Tracker
Application

Exploring the Features You have now reached the last chapter of the book and have learned
of th? Weather Tracker quite a few new concepts along the way. In this chapter, you'll dot the i's and
Application, 188 cross the t's by developing a fully functional weather-tracking application.

You will be working with new processes in this chapter, but you will also draw
on what you've learned in previous chapters to create the final product. In
this chapter, you will put everything you've learned together to create this

Using the MSN Weather one application.
Web Service, 204

Creating the Application
User Interface, 189

And Now, Just ClickOnce,
229

Exploring the Features of the Weather Tracker Application

In this section, you'll become acquainted with the features used to create version 1.0 of
the weather-tracking application, called Weather Tracker. This application contains the fol-
lowing features in version 1.0:

Starts and resides as an icon in the notification area.
Configures optional user settings from the notification area icon in the context menu.
Refreshes all weather data on demand from the context menu in the notification area.

Uses the MSN Weather service to provide data (weather locations, conditions, and fore-
casts) for cities around the world.

Stores and persists user settings using XML.

Minimizes but doesn’t close when the user clicks the Close button in the title bar. The
application will close only when the user clicks Exit on the context menu.

Contains a splash screen on start-up.
Contains an About box available from the context menu.
Displays the current temperature in the system tray with a weather icon and color coding.

Converts between metric units and English (or Imperial) units.
The application will not contain the following features in version 1.0:

Will not work for more than one city at a time

No graphical gauge controls for wind, pressure, temperature, and so forth

I'll now explain how the Weather Tracker application functions. First, the user will briefly
see the splash screen. Then the application will go directly to the notification area in the
Windows taskbar and display the current temperature. If the temperature is above 100
degrees Fahrenheit (or 38 degrees Celsius), the temperature will be displayed in red start-
ing at 00. If the temperature is below 32 degrees Fahrenheit (or 0 degrees Celsius, which are

negative degrees), the temperature will be displayed in violet. If the temperature in Fahren-
heit is below 0 (or -18 degrees Celsius), the temperature will be displayed in blue. Otherwise,
the temperature will be displayed in white. If the reading is not complete, a red NA will show
up in place of the temperature reading.

If the user right-clicks the icon in the notification area, a context menu opens with
choices to open the Main form and retrieve the current weather. The current weather will
have an icon and provide useful weather data that comes from the MSN Weather service.

Clicking Refresh Weather Info in the context menu after clicking the notification area
icon will trigger a call to the weather Web service to update weather data. This will be done
asynchronously and will start by updating the current weather. If the user clicks Options in
the context menu, an Options dialog box will be displayed. The user will be able to search for
different cities around the world. If the user clicks About in the context menu, the application
will display an About dialog box.

In this chapter, | will use a different approach than in previous chapters. Specifically, as
long as you are using the same components that | specify, you can personalize your applica-
tion as far as size, color, and other attributes are concerned. I'll also present my solution at
different steps in the development; therefore, if you like what you see, you can proceed with
your application by using the companion content that's provided. | will also present a great
deal of code and explain the sections that are linked to the features described earlier.

To produce the application in this chapter, you will follow an incremental approach in
which you implement one feature, integrate it with the rest of the application, and then test
it. You will then move to the next feature until the application is complete.

Creating the Application User Interface

The Main form user interface (Ul) will contain all the weather information you'll display to
the user. Figure 9-1 shows what the Main form will look like when finished.

Wieather Tracker 1.0.0.0 'E|
As you learned in the previous
chapter, you use data binding to
bind the controls to the weather
data. You'll recall that when cre-
ating the data source, you had a
choice of Database, Web Service,
and Objects. In this application,
you will use a Web service as a
data source, and the fields you
will display on the form will be
data bound to the Web service
dataset.

Current Conditions For Redmond, WA

31°F

Sprinkles Humidity: 93%

Feels Like: 37°F

Forecast Today
Low 31°F
High 40°F

Last Update: 12/10/2007 12:16 AM

All'icons or image files in this
chapter are in a folder named
Images under the Chapter9 folder
where you installed the companion
content. The default location is
Documents\Microsoft Press\VB 2008
Express\.

Figure 9-1
Main form in the Weather Tracker application

TO CREATE A DATA SOURCE FOR A MAIN FORM CONTROL

1. Start Microsoft Visual Basic 2008 Express Edition, and create a new Windows Forms
Application project. Name the application Weather Tracker.

2. In Solution Explorer, rename Forml.vb to Main.vb.

3. Using the Properties window, change the properties for the Main form using the values

in Table 9-1.

Size:Width 660

Size:Height 350

BackColor System:HotTrack
Table 9-1

Properties for Main.vb

190 Microsoft Visual Basic 2008 Express Edition: Build a Program Now!

Property Value

ForeColor Web:White

Font Segoe Ul 8 Bold

Icon Sun.ico

MinimizeBox False

MaximizeBox False

StartPosition CenterScreen DoubleBuffered helpEiSEE.
prevent flickering when the form

q Q is redrawn. The form control

FormBorderSter leedD|ang is using a secondary buffer to
update the form’s graphics data,

ShowlInTaskBar False whereby a quick write to the dis-
played surface memory is then

DoubleBuffered True performed, reducing the chances
of flickering. If DoubleBuffered

WindowState Minimized is not enabled, then progressive
redrawing of parts of the dis-
played form occurs, creating the

Properties for Main.vb flickering.

Adding Notification Area Capabilities

Now that you have established the Main form, you'll add the notification area capabili-

The Notifylcon control does not

ties. Let's talk about terminology. If an application uses an icon located in the notification have a design represeHt NN

area (the area on the Windows taskbar where the clock ordinarily appears), this icon is called the form surface, so you'll add
. - . . X it to the component tray at the

a notify icon and is implemented with a Notifylcon control. The icon can have a context same place where you added the

menu with different actions. Your icon will have a context menu with the following choices: Ci'z‘:;':ﬂ;:’:”“e““ in the EiSy
About, Refresh Weather Info, Options, Open, and Exit.

TO CREATE A NOTIFYICON CONTROL

1. In the Toolbox, drag a Notifylcon control from the Common Controls group to the form.
It appears in the component tray. Name the control notifyWeather.

Change its Text property to Weather Tracker.

In the Toolbox, drag a ContextMenuStrip control from the Menus & Toolbars group to
the form, and name it cmsNotify.

Using the Smart Tag on the cmsNotify control in the component tray, select Edit Items....
The Items Collection Editor appears.

In the Items Collection Editor, change the cmsNotify control’s properties using the values
in Table 9-2.

Property Value

BackColor System:Gradient
InactiveCaption

ShowlmageMargin False

Properties for the cmsNotify Control
From the Select Item and Add to List Below drop-down list on the left, select Menultem,

and then click the Add button. Change the control’s properties using the values shown in
Table 9-3.

Property Value

(Name) tsmiAbout
Text About...
ForeColor System:HotTrack

Properties for the About Menu Item

From the Select Item and Add to List Below drop-down list, select Separator, and click the
Add button. Change its ForeColor property to System:HotTrack.

From the Select Item and Add to List Below drop-down list, select Menultem, and click
the Add button. Change the control's properties using the values shown in Table 9-4.

Property Value

(Name) tsmiRefresh
Text Refresh Weather Info
ForeColor System:HotTrack

Properties for the Refresh Menu ltem

From the Select Item and Add to List Below drop-down list, select Separator, and click the
Add button. Change its ForeColor property to System:HotTrack.

From the Select Item and Add to List Below drop-down list, select Menultem, and click
the Add button. Change the control’s properties using the values shown in Table 9-5.

Property Value

(Name) tsmiOptions
Text Options...
ForeColor System:HotTrack

Properties for the Options Menu ltem

From the Select Item and Add to List Below drop-down list, select Separator, and click the
Add button. Change its ForeColor property to System:HotTrack.

From the Select Item and Add to List Below drop-down list, select Menultem, and click
the Add button. Change the control's properties using the values shown in Table 9-6.

Property Value

(Name) tsmiOpen
Text Open...
ForeColor System:HotTrack

Properties for the Open Menu Item

From the Select Item and Add to List Below drop-down list, select Menultem, and click
the Add button. Change the control’s properties using the values shown in Table 9-7.

Property Value

(Name) tsmiExit
Text Exit
ForeColor System:HotTrack

Properties for the Exit Menu Item

You're finished adding items to the context menu strip. The Items Collection Editor
should look like Figure 9-2.

Click OK to close the Items Collection Editor.

You now need to associate the context menu strip with the notifyWeather control, which
is fairly easy to do.

-

Items Collection Editor ==
Select itern and add to list below: ContextMenuStrip crrsMotify
= Menultem Add =
Mernbers: o
5 7 UseMfaitCursar False
= tsmibout & Behavior
ToolStripSeparatorl AllowDrop False
= tsmiRefresh Allowtderge True
ToolStripSeparatar? AutoClose True |l
= tsmilptions Enabled True |
TooltripSeparatord Irnetdode MoControl |
= tsmidpen ShowltermToolTips True 3
= tsmiFxit TabStop False ‘
B Data |
(ApplicationSettings) I |
(DataBindings)
Tag
E Design
(Mame) cmshMotify o
QK I ’ Cancel

ftems for the context menu

TO ASSOCIATE THE CONTEXT MENU STRIP WITH THE CONTROL

Select the notifyWeather control in the component tray, and in the Properties window,
change the ContextMenuStrip property to cmsNotify.

You are currently acting as the user. For you to be able to click the application when it's
in the notification area, your notifyWeather control needs an icon. The icon will later
become dynamically generated by your application, and the icon will become the current
temperature. Therefore, you now need to associate a temporary icon with the applica-
tion; otherwise, you will not be able to select it in the notification area.

In the Properties window for notifyWeather, set the Icon property to otheroptions.ico. This
file is located in a folder named Images in the Chapter9 folder where you installed the
companion content.

3. Press F5 to execute the application.

You should see this icon H in your notification area:

If you right-click this icon, you should see the context menu shown in Figure 9-3.

About..,
Refresh Weather Info
Options..,

Open..,
Exit

BE WS 6 oo

Context menu of the notifyWeather contro/

When you are finished, the only way to stop the application is to click the blue Stop
Debugging button in the Visual Studio toolbar. You will now add another way to stop the
application.

TO STOP AN APPLICATION

1. Select the tsmiExit control from the Properties window drop-down list.

2. Click the Events button (the yellow lightning icon) in the Properties window, and then
double-click the Click event to open Code view.

3. Edit the tsmiExit_Click event handler, and add the Shutdown method as shown in the
following code. You're adding the Shutdown method because you always want to make
your code reusable, and a Shutdown method will enable you to do this.

1 Private Sub tsmiExit_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles tsmiExit.Click
Me . Shutdown ()

End Sub

Private Sub Shutdown()
If notifyWeather.Visible Then
notifyWeather.Visible = False

N o v W N

8 End If
9 Application.Exit(Q)
10 End Sub

The first instruction of the Shutdown method will verify whether the notifyWeather
control is visible and, if it is, will make the notify icon disappear from the notification
area. The last line will terminate the application. You will now be able to click the Exit
menu item in the context menu to terminate the application; you won't need to use the
Stop Debugging button. You can try your application by pressing F5 and then verifying
whether the Exit menu item works as expected.

Now you can exit from your application, but you don't have a way to open the Main
form, which will have the weather information. To do this, you will want to link the
double-click event of the notifyWeather control icon in the notification area to the
action of opening the Main form in the middle of the screen.

In Design view, select the notifyWeather control in the component tray. In the events
list of the Properties window, double-click the MouseDoubleClick event. Edit the notify-
Weather_MouseDoubleClick event handler, and add the Restore method as shown in the
following code:

11 Private Sub Restore()

12 If Me.WindowState = FormWindowState.Minimized Then
13 Me.WindowState = FormWindowState.Normal

14 End If

15 Me.Visible = True

16 End Sub

17 Private Sub notifyWeather_MouseDoubleClick(ByVal sender As _
System.Object, ByVal e As System.Windows.Forms.MouseEventArgs) _
Handles notifyWeather.MouseDoubleClick

18 Me.Restore()

19 End Sub

Again, you created a private method called Restore in case you need it elsewhere in your
application.

The first line of code in the Restore method is there because it is impossible to know in
which context your method will be called. In your case, when you created the form, you
set the WindowsState property to minimized and ShowinTaskbar to false so that the form

If you want to learn more about why
a form is closing, you can search

the Help system for CloseReason
enumeration.

starts minimized and the user doesn't see it. When you start the application, the first time
the user clicks the Open... menu choice (you'll code this soon) or double-clicks the noti-
fyWeather control, the user won't be able to see the form if you have set only its Visible
property to true. Therefore, you need to verify in which window state the form appears. If
it's still minimized, you need to set it to Normal so that the focus is on the Main form.

Press F5 to test the changes. Double-click the notifyWeather icon in the notification area,
and the Main form should appear.

Now let's see what happens if the user clicks the Close button (the red X). If you close the
application by clicking the Close button, it closes permanently. Yet, our design require-
ments state that the application should simply minimize to the notification area when
the user clicks the Close button. Therefore, you'll now intercept an event that occurs just
before the form is closed and just before the form object is deleted, which is an event
called FormClosing. By using a FormClosing event, you can extract the reason for the
form’s closing and in this way intercept the event when the user clicks the Close button.

. In Design view, select the Main form. Go to the events list in the Properties window, and

double-click the FormClosing event. Add the following code to the Main_FormClosing
event handler:
20 Private Sub Main_FormClosing(ByVal sender As System.Object, ByVal e As

System.Windows.Forms.FormClosingEventArgs) Handles _
MyBase.FormClosing

21 If (e.CloseReason = CloseReason.UserClosing) Then
22 e.Cancel = True

23 Me.Hide()

24 End If

25 End Sub

Part of the event is FormClosingEventArgs, which contains the arguments that accompany
the event notification as well as the reason why the form is closing.

If the user is closing the form, setting the Cancel property to true will stop the closing
process and prevent the form from closing. The next instruction is a call to the Hide
method. The Hide method is simply a synonym for setting the Visible property to false.
The form will simply be hidden.

When the user clicks the Exit item in the context menu, the FormClosing event will be
raised; however, the reason given will not be UserClosing. Instead, it will be Application-
ExitCall, and therefore the application will continue the closing process.

You'll now add the code for the Open... menu choice. To write the code for this event,
click cmsNotify in the component tray, and then double-click the Open... menu choice on
the content menu strip. The Click event handler will be created, and you'll call the Restore
method to handle the form’s visibility, which is done by the Me.Restore() code. You will
write code to make sure the form has the focus so that it ends up on top of any other
windows that are displayed. Add the following code to the tsmiOpen_Click event handler:

26 Private Sub tsmiOpen_Click(ByVal sender As System.Object, ByVal e As _
System.EventArgs) Handles tsmiOpen.Click

27 Me.Restore()
28 Me.Focus()
29 End Sub

Now, test the application with the following test scenario.

Start the application by pressing F5. Right-click the notify icon, and select Open.... The
Main form should appear in the middle of your screen. Minimize the Main form by clicking
the Close button. Once it is minimized, double-click the notify icon. You should see the Main
form again. Terminate the application by click the Exit menu item.

Adding the Splash Screen and About Dialog Box

Since you created a splash screen and an About dialog box in Chapter 6, “Modifying
Your Web Browser,” | won't spend too much time on those topics in this section. You merely
need to add two new forms to your project and name them SplashWeatherTrackervb and
AboutWeatherTrackervb. Don't forget to use the correct template when you add the form to
the project; if you don't, you won't be able to access all of the prepopulated information.

Using the values in Table 9-8, set the specified properties for the SplashWeather form.
The location of your labels doesn't matter; place them wherever you want. Any images are
located in the Images folder under Chapter9 where you installed the companion content.

Component Property
SplashWeatherTracker StartPosition
MainLayoutPanel Backgroundimage

Main LayoutPanel Backgroundimagelayout
ApplicationTitle Font

ApplicationTitle ForeColor

Version Font

Version ForeColor

Copyright Font

Copyright ForeColor

Properties for SplashWeather.vb

Value

CenterScreen
Mountain.jpg
Stretch

Segoe Ul 20 Regular
Web:White

Segoe Ul 9 Bold
Web:White

Segoe Ul 9 Bold
Web:White

Using the values in Table 9-9, set the specified properties on the AboutWeatherTracker form.

Component Property
AboutWeatherTracker Font
AboutWeatherTracker BackColor
AboutWeatherTracker StartPosition
AboutWeatherTracker ForeColor
TextBoxDescription Font

Properties for AboutWeatherTracker.vb

Value

Segoe Ul 8 Regular
System:HotTrack
CenterScreen
Web:White

Segoe Ul 8 Regular

Component Property Value

TextBoxDescription BackColor System:HotTrack
TextBoxDescription ForeColor Web:White
OKButton FlatStyle Flat
LogoPictureBox Image Sunset.jpg

Properties for AboutWeatherTracker.vb

Now you need to attach these two forms to the rest of the application.

TO ATTACH FORMS TO AN APPLICATION

To attach the splash screen, you'll use the Project Designer. In Solution Explorer, right-
click the Weather Tracker project, and select Properties. On the Application tab, set the
Splash Screen drop-down list to SplashWeatherTracker.

While you are at it, you'll change the application icon to Sun.ico. In the Icon drop-down
list, select <Browse...>. Select the Sun.ico file in the Chapter9 Images folder.

Click Assembly Information, and set the assembly information for the project. This infor-
mation will fill the splash screen and About dialog box fields.

To attach the About box, you need to tie it to the context About... menu item. Go to your
Main.vb form in design mode.

Select cmsNotify in the component tray, and double-click the About... menu choice in the
context menu strip. Add the following code to the tsmiAbout_Click event handler:

1 Private Sub tsmiAbout_Click(ByVal sender As System.Object, ByVal e As _
System.EventArgs) Handles tsmiAbout.Click

2 AboutWeatherTracker.ShowDialog()

3 End Sub

Adding the Options Dialog Box

You now have three forms. You will add the final Options dialog box form that will
appear when the user clicks the Options... menu item in the context menu after clicking the
notify icon.

TO ADD THE OPTIONS DIALOG BOX FORM

Options

1. In Solution Explorer, right-click Weather Tracker,
select Add, and then click Windows Form in the

At this point in the chapter, the context menu.
current project state is saved in

the Chapter9 companionicois 2. From the templates, select Windows Form, name the
tent in a folder named Weather

Tracker Ul. To add the Web form Options.vb, and then click Add.

service functionality, you can . . .
continue with your own project 3. Using the values in Table 9-10, set properties and

;r’a‘éiee:*:; project in ViCSEA, add controls to the Options form so that it looks like |H
the form shown in Figure 9-4. e

The Options form

Component Control Type Property Value

Options Form Font Segoe Ul 8 Regular
Options Form BackColor System:HotTrack
Options Form StartPosition CenterScreen
Options Form ForeColor Web:White
Options Form ControlBox False

Options Form FormBorderStyle FixedDialog
Option Form MaximizeBox False

Options Form MinimizeBox False

Properties and Controls for the Options Dialog Box

Component
Options
Options
Options
txtCurrentCity
txtCurrentCity
IbICurrentCity
IbPossibleCities
IbPossibleCities
IbPossibleCities
IbPossibleCities
btnOk

btnOk

btnOk
btnCancel
btnCancel
btnCancel
Options
rbCelsius
rbFahrenheit
rbFahrenheit
IblUnit

Properties and Controls for the Options Dialog Box

Control Type

Radio Button
RadioButton

RadioButton

Property
Text
Size:Width
Size:Height
AcceptReturn
BackColor
Text
BackColor
Cursor
SelectionMode
ForeColor
BackColor
FlatStyle

Text
BackColor
Text

FlatStyle
CancelButton
BackColor
BackColor
Checked

Text

Value

Options

295

295

True
System:InactiveCaption
Current City:
System:InactiveCaption
Hand

One

Web:White
System:InactiveCaption
Popup

Ok
System:InactiveCaption
Cancel

Popup

btnCancel
System:HotTrack
System:HotTrack

True

Unit

TO HOOK UP THE FORM TO THE CONTEXT MENU

Display the Main form in design mode.

Click cmsNotify in the component tray, and double-click the Options... menu item in the
context menu strip.

At the top of Main.vb, just below Public Class Main, add the following line of code:

Dim optionsForm as New Options()

Add the following lines of code to the tsiOptions_Click event handler:

1 Private Sub tsmiOptions_Click(ByVal sender As System.Object, ByVal e _
As System.EventArgs) Handles tsmiOptions.Click

2 optionsForm.ShowDialog()

3 End Sub

Press F5 to run the application. You should see your splash screen. Use the context menu
on the notify icon to open the About dialog box and the Options dialog box. When you
have finished, exit the application.

You are now finished with this part of the project. Be sure to save your project. It is time
to get to the meat of the project: using the MSN Weather service.

Using the MSN Weather Web Service '

You have constructed a nice shell, but the shell is rather empty at this moment. You need
to access weather data in order to populate the shell. To accomplish this, you will learn to
consume Web services. But first, what is a Web service?

A Web service is an application that runs on a Web server such as Internet Information
Services (IIS). A Web service has a series of exposed public methods that an application can
call. You'll find numerous examples of Web services on the Internet. You can use Web services
that perform a variety of operations, such as finding a ZIP code, viewing a map, buying movie

tickets, looking for information on search engines such as MSN or Google, and accessing
weather information like your application will soon do. In the .NET world, classes and wizards
are available to help you consume Web services. There are two popular implementations of
Web services in use on the Web: SOAP and REST.

SOAP Web services use XML to send messages and return results. All objects are serialized
(the messages are sent as a series of bits and pieces over the Internet) and are then deserialized
on the other side into objects. The beauty of XML Web services is that they can be hosted and
consumed on any operating system and developed in any language. Because they use a series of
standardized protocols and rules, XML Web services promote interoperability and efficiency. The
future of the transacted world over the Internet lies in big part with the success of Web services.

REST Web services use HTTP to make calls to services and receive XML data. They are
lighter to use and implement, and you call them just as you would type a URL in a browser.

For instance, http.//www.foobar.com/parts/111 will call a Web service and get you the details You will need to be connected to
the Internet to follow the steps

about a part with the part number 111. The XML coming back to your browser would be in the rest of the chRR(EIIRIN
the details of that part. REST stands for Representational State Transfer. It's not a standard erwise, nothing will work from
. T . . . this point on, especially in the
like SOAP is; it is simply an architectural style. However, although it's not a standard, it does next section because that's where

prescribe the use of many standards such as XML, HTTP, URL, HTML, and so on. e o
In this project, you will use REST Web services as offered by MSN.

You can use your regular Web browser to try a SOAP or REST Web service without writing a
line of code. You can usually point your Web browser to the Web service address and invoke its
methods. This is an excellent way to learn what a Web method needs and what its output looks
like. (Please note that it's not possible to talk to all of them in this way.) As an example, try a
SOAP Web service that returns a currency conversion rate between two currencies: http://www.
webservicex.com/CurrencyConvertorasmx. Click the ConversionRate method, scroll down until
you see two text boxes, type CAD and USD in the two text boxes, and then click Invoke. In a
separate browser, you will obtain XML and the conversion rate (as of today).

To test a REST Web service, you can use the same URL that you will use in code later in this
chapter. In your browser, type the following: http://weather.service.msn.com/data.aspx?src=vist
a&wealocations=wc:USWAQ367. In the same browser tab or window, you'll see the XML repre-
senting weather information for the city of Redmond, Washington.

7m7.

Trying a Web Service

In Chapter 8, “Managing the
Data,” you learned that you could
create data sources from a Web
service, a database, or an object.
In this section, that’s exactly what
you'll benefit from here. You will
see how reusing tools and com-

ponents allows you to be more
productive. You will use the same
techniques used in the previous
database examples, except that
this time you will be binding data
coming across the wire from all
parts of the globe.

Connecting to MSN Weather Web Services

You will now build a business logic DLL to get the data and then display the object
returned by the different methods in that DLL.

First you will create a .NET assembly that will contain the information used to communi-
cate with MSN and also to map to items in the user interface you'll define later.

TO CONNECT TO A WEB SERVICE

1. Click File, Add, New Project, and then select the Class Library template. Type Weather-
Report for the class library name.

2. Inyour class library, rename classl.vb to WeatherReport.vb.

3. Add a reference to the System.Drawing namespace, and while you're in Solution Explorer,
add a reference to your newly created class library to your WeatherTracker project.

4. To use the bitmap, you'll have to add an Imports statement to your code. To do this, open
the WeatherReport.vb file, and add the following:

Imports System.Drawing

5. This time, instead of binding the data to a database as you did in Chapter 8, you'll bind
the Web service data to an object that will then be bound to items on your form. Now
add the fields and properties in Table 9-11 to your WeatherReport.vb file. To add a field
and a property quickly and correctly, you will use a snippet. Open the WeatherReport.vb
file, and then for each field listed in the table, right-click in the editor, and select Insert
Snippet/Code Patterns—If, For Each, Try Catch, Property, etc/Properties, Procedures,
Events/Define a Property.

Field Property Type
currentTemperatureValue CurrentTemperature Integer
feelsLikeTemperatureValue FeelsLikeTemperature Integer

Fields and Properties for WeatherReport.vb

Field Property Type

humidityValue Humidity Integer
lastUpdateValue LastUpdate DateTime
locationValue Location String
minTemperatureForecastValue ~ MinTemperatureForecast Integer
maxTemperatureForecastValue =~ MaxTemperatureForecast Integer
skyCodeValue SkyCode Integer
skyTextValue SkyText String
skylmageValue Skylmage Bitmap
locationCodeValue LocationCode String

Fields and Properties for WeatherReport.vb

Save your file after adding all the fields and properties.

Build your solution by pressing Ctrl+Shift+B.

Now you'll add the weather information to your form.

TO ADD WEATHER INFORMATION TO YOUR FORM

Make sure you are viewing the Main form on the designer surface.
Go to the Data Sources window, and then select Add New Data Source....

You will see the familiar Data Source Configuration Wizard, but this time select Object
instead of Database.

You'll add a reference to your newly created class library since this object will be the one
you'll use to map the data from the Web service and the data displayed on your form.
Click the Add Reference... button, and on the Projects tab select your WeatherReport

class library. Your screen should display the wizard with the WeatherReport assembly
added, as shown in Figure 9-5. Click Next to continue and then the Finish button.

-

Data Source Configuration Wizard Bz

FJ_ Select the Object You Wish to Bind to
)]
=

In what assembly is the object located? [your object does not appear, cancel the wizard and rebuild the
project that contains your object.]

Ff_;@ Weather Tracker Add Reference..,
-3 Wi¥eatherReport
=4} WeatherReport

[¥] Hide assernblies that begin with Microsoft or Systern

< Presious ” [est = I | Finish l [Cancel

| Data Sources -1 x

3 i 5 O Data Source Configuration Wizard with the WeatherReport assembly selected
=} WeatherReport

@_,_] WeatherReportIZ‘

You should see the WeatherReport data source on the Data Sources tab beside Solution
Explorer. Refer to Figure 9-6 to make sure you're at the right place.

As you can see in Figure 9-6, the data source name is actually also a drop-down control.
Click it, and select Details. Then click the plus sign to expand it and see the details of your
data source that was created from your WeatherReport class library assembly. You'll see
that all the properties you created are represented in the data source.

'Eﬂ.Solution Explorer | 7] Data Sources |

Data Sources tab with the newly
created WeatherReport data source

Expand the WeatherReport node, and change all the element types (except Skylmage)
from TextBox to Label by clicking the down arrow on each element and selecting Label
from the drop-down list.

Drag WeatherReport to the Main form design surface. This creates all the fields and
labels for you. The design might not be what you want, but at least it's partially done for
you. You'll fix this in a minute. Note that two new controls have been added to the com-
ponent tray: WeatherReportBindingSource and WeatherReportBindingNavigator.

Click WeatherReportBindingNavigator in the component tray, and change its Visible
property to false. (You might need to click the Properties button at the top of the Prop-
erties window to see the list of properties.)

You can't see the boundaries of all the controls on the form. To help with layout, select all
the controls on the form by creating a large selection rectangle around them with your
mouse pointer. In the Properties window, change BorderStyle from None to FixedSingle.
Black borders should appear around all controls. Once the form is done, you'll reset
BorderStyle to None.

Now you can start modifying the layout and look and feel of your form. For the Pic-
tureBox control, set the Name property to pbSkylmage, set the BackColor property to
Web:White, set the Size.Width property to 55, and set the Size.Height property to 45.

Delete the Sky Image: label.
Add a Label control, and set the Text property to Current Weather.

Add a Label control, and set the Text property to Contacting MSN Weather Service and
the Visible property to False.

Add a PictureBox control, and set Visible to False and Image to progressbar._green.gif from
the Images folder.

Using Figure 9-7 as a guide, size and position the controls on the form. If you want,
adjust the font size and style of the labels.

Forml Bl

Current Conditions For

- Feels Like:

Clear Humidity:

Contacting MSM Weather Service
L] Ou

Forecast Today T T —

Lowr

High

Last Update:

Figure 9-7
Layout of the current weather information

Setting User and Application Preferences

The application settings are stored in an XML file and persist from one execution to
another. The current location code will be saved here so that a user doesn’t have to re-enter
the location every time your application starts.

TO CREATE USER SETTING ENTRIES
1. In Solution Explorer, right-click the Weather Tracker project, and select Properties. The
Project Designer appears.

2. On the Settings tab, add entries for CurrentLocationCode and CurrentUnit, as shown in
Figure 9-8.

Marme Type Scope Walue
b String ¥ |User w L LISWAAD 36T
T CurrentUnit String w |User > |F
Currentlocation | String w |User ¥ |Redmaond, Washington
* - -
Figure 9-8

Application settings in the Project Designer

210

Microsoft Visual Basic 2008 Express Edition: Build a Program Now!

All entries are strongly typed (that is, a real .NET type) and set to type String. The scope
field is set to User, which means this setting is related to user preferences and the user
can change it during execution. This type of setting will be persisted from one execution
to another. The other possible setting is Application-scoped, which is usually associated
with an application that uses a database connection string. Users can’t change those set-
tings at execution time.

Save your project, and close the Project Designer.

Working in the Background

If you try to run your form now, you won't get anything from the Web service; you'll get
only the default text you might have entered. This process differs from your work with data-
bases, in which a great deal of code was completed for you so you could retrieve the data
and populate the fields. When dealing with a Web service, you must do more of the actual
coding to get the data into the form. Let’s talk about how you'll do this.

Talking to a Web service can be a long process. This typically means only a few seconds
(perhaps up to 30 seconds), but you can't leave the user with a blocked Ul while your appli-
cation is retrieving information. You therefore need a way of saying to your application:

“Go get this information, and let me know when you have it." This programming technique
is called multithreaded programming with callbacks. Since .NET Framework 2.0, this type of
programming is simplified by a new class called BackgroundWorker. As its name implies, it
works in the background on a task; what's not implied is that it will let you know when it has
completed the task.

TO ADD THE MSN WEATHER DATA CLASS

To communicate and retrieve the data from the MSN Weather service, you'll create a
new class called MSNWeatherData.vb and add it to your project. This class will insulate you
from the service and its technicalities; it's an OOP technique called abstraction, which enables
you (or somebody else using your class) to just say, “Give me the weather report for a loca-
tion. | know it returns a WeatherReport object, and that's all | need in order to integrate the

weather report into my application.” In addition, you can use the MSNWeatherData class in
other applications. Isn't that cool?

To talk to the MSN Weather service and return the data from the WeatherReport class,
you've already created a DLL to handle the mapping between the form and the code; you
also enabled the data binding on an object. In the following code, you'll see that to connect
to the MSN Web service and read the data, you have to use a simple XMLTextReader to con-
nect to the server and open the resulting XML. Here are the two methods in this class; the
code is not really difficult to understand because it is repetitive, but essentially it's just a task
of mapping the correct XML file and mapping the methods to the appropriate fields in the
WeatherReport class.

Add the following code to the WeatherReport class.

Function GetWeatherReport(ByVal LocationCode As String) As _
WeatherReport.WeatherReport
‘ create a WeatherReport instance so that we can load the data from
‘ the Web service call and then map it to the UI.
Dim currentWeatherReport As New WeatherReport.WeatherReport()

‘ URL corresponding to the MSN REST Web Service - see how the

‘ locationCode is passed in a parameter to this URL.

‘ The XMLTextReader opens up the URL and receives the XML returned

‘ by the server

Dim feedUrl = _

http://weather.service.msn.com/data.aspx?src=vista&wealocations= _
& LocationCode

Dim reader As New XmlTextReader(feedUr1)

Dim firstForecastDone As Boolean = False

Dim skyImagesRelativeUrl As String = “images/“

Try
‘ The rest is just extraction and mapping of the meaningful
‘ data points.
While (reader.Read ())
If ((reader.NodeType = XmINodeType.Element) And _
(reader.Name = “weather”)) Then
reader.MoveToAttribute(“weatherlocationname”)
currentWeatherReport.Location = reader.Value
ElseIf ((reader.NodeType = XmlNodeType.Element) And _

((reader.Name = “forecast”) _

And (firstForecastDone = False))) Then
firstForecastDone = True
reader.MoveToAttribute(“high”)
Integer.TryParse(reader.Value, _

currentWeatherReport.MaxTemperatureForecast)

reader.MoveToAttribute(“Tow™)
Integer.TryParse(reader.Value, _
currentWeatherReport.MinTemperatureForecast)
ElseIf ((reader.NodeType = XmINodeType.Element) And _
(reader.Name = “current”)) Then
reader.MoveToAttribute(“temperature”)
Integer.TryParse(reader.Value, _
currentWeatherReport.CurrentTemperature)

reader.MoveToAttribute(“feelsTlike”)
Integer.TryParse(reader.Value, _
currentWeatherReport.FeelsLikeTemperature)

reader.MoveToAttribute(“humidity”)
Integer.TryParse(reader.Value, _
currentWeatherReport.Humidity)

reader.MoveToAttribute(“skytext”)
currentWeatherReport.SkyText = reader.Value

reader.MoveToAttribute(“skycode”)

Integer.TryParse(reader.Value, _
currentWeatherReport.SkyCode)

Dim fileName As String = skyImagesRelativeUrl & _
currentWeatherReport.SkyCode & “.tif”

currentWeatherReport.SkyImage = New Bitmap(fileName)

reader.MoveToAttribute(“observationtime”)

Dim splitter As Char() = “:”

Dim hourMinuteSecond As String() = _
reader.Value.Split(splitter)

Dim hour, minute, second As Integer

Integer.TryParse(hourMinuteSecond(0), hour)

Integer.TryParse(hourMinuteSecond(1l), minute)

Integer.TryParse(hourMinuteSecond(2), second)

reader.MoveToAttribute(“date”)
splitter = “-“
Dim yearMonthDay As String() = _
reader.Value.Split(splitter)
Dim year, month, day As Integer
Integer.TryParse(yearMonthDay(0), year)
Integer.TryParse(yearMonthDay (1), month)
Integer.TryParse(yearMonthDay(2), day)
currentWeatherReport.LastUpdate = New DateTime(year, _
month, day, hour, minute, second)
End If
End While
‘ We return a valid weather report.
Return currentWeatherReport
Catch ex As Exception
Throw ex
End Try
End Function

Function GetLocations(ByVal Query As String) As _
List(0f KeyValuePair(Of String, String))
If ((Query = “”) Or (Query.Length < 2)) Then
Return Nothing
Else
‘ Because the ListBox in the Options UI can’t bind with a
‘ generic collection that doesn’t support IList or IListSource;
‘ that’s why you use a generic List(Of Items you really need)
you are able to load
Dim results As New List(Of KeyValuePair(Of String, String))
Dim searchUrl As String = _
“http://weather.service.msn.com/find.aspx?outputview=search&src=vista&wease
archstr=" & Query
Dim reader As New XmlTextReader(searchUr1)
Dim TocationCode As String
Dim TocationFulIlName As String

‘

While (reader.Read())
If ((reader.NodeType = XmINodeType.Element) And _
(reader.Name = “weather”)) Then
reader.MoveToAttribute(“weatherfullname”)

locationFulIName = reader.Value
reader.MoveToAttribute(“weatherlocationcode”)
locationCode = reader.Value
Dim pair As KeyValuePair(Of String, String) = _
New KeyValuePair(Of String, String)(lTocationCode, _
TocationFulTName)
results.Add(pair)
End If
End While
Return results
End If
End Function

Now that you've created the two methods required to obtain information from the MSN
REST Weather service, you'll add the code to do it asynchronously.

TO PERFORM A TASK IN THE BACKGROUND

Open the Main form in Design view.

Go to the Toolbox. In the Components section, select the BackgroundWorker control,
and drag it to your form. It doesn’'t have a design-time portion, so it will be added to the
component tray. Rename it BackgroundCurrentWorker.

At the top of the Properties window for BackgroundCurrentWorker, click the Events but-
ton (the yellow lightning icon), and then double-click the DoWork event.

Add the following code to the BackgroundCurrentWorker_DoWork event handler:

Private Sub BackgroundCurrentWorker_DoWork(ByVal sender As System.Object, _
ByVal e As System.ComponentModel.DoWorkEventArgs) Handles _
BackgroundCurrentWorker.DoWork
‘ This method will execute in the background thread created
‘ by the BackgroundwWorker component
Dim desiredLocationCode As String = e.Argument
Dim myMSNWeather As New MSNWeatherData()
e.Result = myMSNWeather.GetWeatherReport(desiredLocationCode)

End Sub

The DoWork event handler is where the call to the MSN Weather service takes place. You
will start by calling the GetWeatherReport method. When you invoke the GetWeather-
Report method, it runs in a separate context so that it doesn't block the application Ul.
Otherwise, the application could appear to be in a “frozen” state. The GetWeatherReport
method takes one parameter and returns a WeatherReport result.

Add the following startBackgroundGetCurrentWeather method:

Private Sub startBackgroundGetCurrentWeather()

‘ Execute the Background Task only if it’s not already working

If Not (BackgroundCurrentWorker.IsBusy()) Then
Me.UseWaitCursor = True
Me.lb1Progress.Visible = True
Me.PictureBoxProgress.Visible = True
BackgroundCurrentWorker.RunWorkerAsync(currentLocationCode)

End If

End Sub

The startBackgroundGetCurrentWeather method starts the BackgroundWorker compo-
nent. You first need to verify whether BackgroundWorker is already busy with a previous
call; if you don't do this, you'll end up with an InvalidOperationException. Simply verifying
whether BackgroundWorker is busy ensures that you won't get that exception when call-
ing the RunWorkerAsync method. In fact, this is the only exception that this method can
raise. A quick look at the documentation can confirm this.

Executing the RunWorkerAsync method means submitting a request to start an operation
asynchronously, which raises the DoWork event. An event handler with the following name
format is invoked: <your backgroundworker variable>_DoWork. In this case, the Back-
groundCurrentWorker_DoWork method is executed when the DoWork event is raised.

Switch to Design view, and click BackgroundCurrentWorker in the component tray.
In the events list in the Properties window, double-click the RunWorkerCompleted event.
Add the following code to the BackgroundCurrentWorker_RunWorkerCompleted event

handler:

Dim currentWeatherReport As WeatherReport.WeatherReport
If (e.Error Is Nothing) Then

Me.UseWaitCursor = False
Me.lb1Progress.Visible = False
Me.PictureBoxProgress.Visible = False

‘ This event fires when the DoWork event completes

currentWeatherReport = e.Result

If (currentUnit = “C”) Then
Me.ConvertToMetric(currentWeatherReport)

End If

WeatherReportBindingSource.DataSource = currentWeatherReport

‘ Refresh the display based on the new data binding and

‘ update the Tabels with the proper temperature unit.

WeatherReportBindingSource.ResetBindings(False)

UpdateUnitLabels()

 If Web service returned weather info, then

update notify icon

Me.CreateIcon(currentWeatherReport.CurrentTemperature)
Else

MessageBox.Show(_
“Problem with the MSN Weather Web service! Error message:” + _
vbLf + e.Error.Message + vbLf + “Retry Later!”, _
“Weather Web service problem”)

End If

If the MSN Web service is available, the method you invoked is working in a different
context and on its own. When it is finished with its business, you will be notified that the
method has completed, because a RunWorkerCompleted event will be raised.

To retrieve the results, you must have an event handler with the following name: <your
backgroundworker variable>_RunWorkerCompleted. In this method, you have a parameter of
type RunWorkerCompletedEventArgs that contains everything you need to obtain the results. If
an exception was raised in the DoWork event handler, you'll be able to retrieve it by checking the
Error property, which is of type Exception. If there is no error, you must retrieve the results your-
self. Remember that the Results property will give you an element of type Object, which by itself
will not help you. You need to assign it a variable with the same type as the binding class you cre-
ated (that is, WeatherReport) to pass data back and forth between the Web service and the form.

If you recall, when you dragged the WeatherReport object to the designer surface, you
automatically created data-bound controls for all of those fields. Thus, you simply need to

assign that currentWeatherReport variable as the data source for BindingSource, and you will
have a link between what's coming from the Web service and the controls on your form. In
addition, you have to make a call to ResetBindings(False), which will enable BindingSource

to refresh the form and therefore display the new content for that location. After that, the
method called simply adds the proper unit to the different temperatures, that is, Celsius or
Fahrenheit. What happens next is the creation of the icon that will appear in the notification
area representing the current temperature.

TO ADD SUPPORTING BACKGROUND CODE

At the very top of Main.vb, add the following Imports statements:

1 Imports System.Runtime.InteropServices
2 Imports System.Net

At the top of the class, add the following lines just below Public Class Main:

Public Shared currentTemperature As Double

PubTlic Shared currentLocationCode As String = My.Settings.CurrentLocationCode
PubTlic Shared currentLocation As String = My.Settings.CurrentlLocation
PubTic Shared currentUnit As String = My.Settings.CurrentUnit

The first line of code is declared as a Public Shared field named currentTemperature. A
shared field simply means the field doesn’t belong to any particular instance of that class,
but that there is only one for the entire class. The currentLocationCode, currentLocation,
and currentUnit fields found in the next lines are also shared fields. They are initialized
from the user settings, but they will change once you complete the Options form. They
are also used to carry the changes made in the Options form back to the Main form.

Add the following UpdateWeather method:

15 Public Sub UpdateWeather()

16 Try

17 Me.tsmiRefresh.Enabled = False

18 Me.tsmiOptions.Enabled = False

19 Me.startBackgroundGetCurrentWeather()
20 Me.tsmiRefresh.Enabled = True

21 Me.tsmiOptions.Enabled = True

22 Catch webEx As WebException

23 MessageBox.Show(_

24 “MSN Web service currently unavailable” + vbCrLf + _
25 “Retry later using the Refresh Weather Info menu.”, _
26 “Web Exception”)

27 Me.tsmiRefresh.Enabled = True

28 Catch ex As Exception

29 MessageBox.Show(_

30 “Unknown problem. Error message:” + vbCrLf _

31 + ex.Message + vbCrLf + _

32 “Please, retry later!”, “Unknown error”)

33 Me.tsmiRefresh.Enabled = True

34 End Try

35 End Sub

The UpdateWeather method initiates the update of the weather data by calling the start-
BackgroundGetCurrentWeather method you added earlier. The weather data needs to be
updated when the location is changed or when the Refresh Weather Info menu choice is
clicked in the context menu of the notify icon. The UpdateWeather method also enables

or disables menu choices on the context menu as appropriate.

Completing the Core Weather Tracker Functionality

In the next sections, you will add more code to set up a working version of the Weather
Tracker application. This includes creating the icon, verifying connectivity, verifying weather
Web service availability, and performing other tasks.

First you will add code to create and destroy the icon in the notification area. You can
review the code, but | won't discuss it in much detail because GDI+ and COM “interop” are
subjects that are too advanced for this book. However, you can refer to the comments within
the code to learn more.

TO ADD THE CREATE AND DESTROY NOTIFICATION ICON CODE
In Main.vb, add the following Createlcon method:

1 Private Sub CreateIcon(ByVal temperature As Integer)
2 Dim displayString As String

©O© 0 N O T W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

Dim drawnIcon As Bitmap

Dim brushToDrawString As SolidBrush

Dim iconColor As Color

Dim iconGraphic As Graphics

Dim fontFamily As New FontFamily(“Arial”)

Dim IconFont As New Font(_
fontFamily, _
11
FontStyle.Regular, _
GraphicsUnit.Pixel)

If (currentUnit = “F”) Then
If (temperature = Integer.MinValue) Then
displayString = “NA”
iconColor = Color.Red
ETlseIf (temperature > 100) Then
iconColor = Color.Red
displayString = (temperature - 100).ToString()
ElseIf ((temperature < 32) And (temperature > 0)) Then
iconColor = Color.Violet
displayString = temperature.ToString()
ETlseIf (temperature < 0) Then
iconColor = Color.Blue
displayString = (temperature * -1).ToString(Q)
Else
iconColor = Color.White
displayString = temperature.ToString()
End If
Else
If (temperature = Integer.MinValue) Then
displayString = “NA”
iconColor = Color.Red
ETlseIf (temperature > 38) Then
iconColor = Color.Red
displayString = (temperature).ToString()
ElseIf (temperature < 0) Then
iconColor = Color.Violet
displayString = (temperature * -1).ToString(Q)
ETlseIf (temperature < -18) Then
iconColor = Color.Blue
displayString = (temperature * -1).ToString(Q)

45 Else

46 iconColor = Color.White

47 displayString = temperature.ToString()

48 End If

49 End If

50

51 ¢ Start by creating a new bitmap the size of an icon
52 drawnIcon = New Bitmap(16, 16)

53

54 ‘To draw the string we need a brush

55 brushToDrawString = New SolidBrush(iconColor)

56

57 ‘ Creating a new graphic object so that we

58 ‘ can call the drawstring method with our

59 ¢ temperature or NA if there is no temp.

60 iconGraphic = Graphics.FromImage(drawnIcon)

61

62 ‘ Now we are drawing the temperature string onto
63 ¢ graphic and therefore on the bitmap.

64 iconGraphic.DrawString(displayString, IconFont, _
65 brushToDrawString, 0, 0)

66

67 ‘ We are getting ready to convert the bitmap into
68 ‘ an icon and to set the notifyWeather.Icon with
69 ‘ this newly created icon

70 Dim hIcon As IntPtr = drawnIcon.GetHicon()

71 Dim customMadeIcon As Icon = _

72 Drawing.Icon.FromHandle(hIcon)

73 notifyWeather.Icon = customMadeIcon

74

75 ‘Now that we’re done manipulating the new 1icon
76 ‘ we need to destroy the unmanaged resource,

77 ‘ otherwise we’11 have a handle leak.

78 DestroyIcon(hIcon)

79 End Sub

Add the following Destroylcon method:

57 ‘ The GetIcon method generated an unmanaged handle
58 ‘ that we need to take care of; otherwise, there
59 ‘ will be a handle leak.

60 <D11Import(“user32.d11”, EntryPoint:="DestroyIcon”)> _
61 Public Shared Function DestroyIcon(_

62 ByVal hIcon As IntPtr) As Boolean

63 End Function

TO FINISH THE MAIN FORM

In Design view, select the Main form. In the Properties window, go to the events list, and
double-click the Load event.

Add the following code to the Main_Load event handler:

1 Private Sub Main_Load(ByVal sender As Object, ByVal e As

System.EventArgs) Handles Me.Load

‘Changing the title of our main form with the

‘application name and the version

Me.Text = My.Application.Info.Title + “ “ + _
My.AppTlication.Info.Version.ToString()

‘Creating temporarily the NA qicon.

Me.CreateIcon(Integer.MinValue)

tsmiRefresh.Enabled = False
Me.UpdateWeather()

End If

12 End Sub

O 0 N O U A WN

o
= o

The Main_Load event handler is the starting point for Weather Tracker. In this code,
you're using the My code construct to build the title of the application by using its name
and the version stored in the assembly parameters in the same manner that the About
box uses this information. Next, a red NA (not available) icon is drawn in the notification
area and remains there until the Web service returns with positive results, in which case
the temperature will be drawn as an icon. If everything is working as expected, the pro-
cess for obtaining the weather data starts.

In Design view, click cmsNotify in the component tray. In the context menu strip, double-
click the Refresh Weather Info menu item.

Add the following code to the tsmiRefresh_Click event handler. This code initiates an
update of the weather data when the Refresh Weather Info menu item in the context
menu is clicked.

33 Private Sub tsmiRefresh_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles tsmiRefresh.Click

34 Me.tsmiRefresh.Enabled = False
35 Me.UpdateWeather ()
36 End Sub

In Design view, select all the controls on the Main form. Set the BorderStyle property to
None. (You might need to click the Properties button at the top of the Properties window
to see the list of properties.)

You need to copy all of the weather forecast images from your companion content folder
to the same folder where the Weather Tracker application is located. Specifically, you need
to create a folder called Images and copy all of the *.tif weather image files into this folder.
You'll do this next.

TO ADD WEATHER ICONS

In Solution Explorer, right-click the Weather Tracker project, select Add, and then select
New Folder. Name the folder Images.

Using Windows Explorer, copy the *.tif images (1.tif through 47.tif) from the companion
content to the Images folder you just created. (The default location for the compan-
ion content is Documents\Microsoft Press\VB 2008 Express\Chapter9\Images.)

In Solution Explorer, right-click the Images folder, select Add, and then select Existing
Item. The Add Existing Item dialog box appears.

In the Files of Type drop-down list, select Image Files.

Make sure you are looking in the Images folder, and select all the tif files. To select all the
files, you can press Ctrl+A, or you can use Shift-click.

774
Weather Links

You may be wondering what
the link is between the index
and the filename and who is
creating that link. This is a con-
vention used by many weather
providers on the Internet; there-
fore, this is something that will
work with many services if you
want to add some later.

7m7.

When all the .tif files have been selected, click the Add button to add the images to the

v = Weather Tracker project.

: ' ﬁiijﬁi In Solution Explorer, select all the .tif files. First, select 1.tif, and then, while pressing the

| A : Shift key, select the last tif file.
.:3 Solution Explorer 5] Data Sources . v e . . H '
Prorei — With all the .tif files selected, in the Properties window, set the Copy to Output Directory

. property to Copy Always, as shown in Figure 9-9. Make sure the Build Action property is

= set to Content.

Build Action Content

Copy to Output DN Copy ahaays
Custorn Tool

TO ADD UNIT LABELS AND A CONVERSION UTILITY

Weather icons added to the project o . . .
The data that comes back from the MSN Weather service is always in Fahrenheit, and if

the user wants to have the information in Celsius, you'll need to provide a small tool to do
that. The main form doesn’'t contain any indication about whether the data points are in
Fahrenheit or Celsius, which is why you need a conversion tool to give the application time
to add the degree symbol and the unit.

Add the following code to Main.vb to do both:

PubTic Sub ConvertToMetric(ByRef report As WeatherReport.WeatherReport) _
report.CurrentTemperature = 5 / 9 * (report.CurrentTemperature - 32)
report.FeelsLikeTemperature = 5 / 9 * (report.FeelsLikeTemperature - 32)
report.MaxTemperatureForecast = 5 / 9 *(report.MaxTemperatureForecast - 32)
report.MinTemperatureForecast = 5 / 9 *(report.MinTemperatureForecast - 32)

End Sub

Public Sub UpdateUnitLabels()
CurrentTemperaturelLabell.Text =

CurrentTemperatureLabell.Text & “°” & currentUnit
FeelsLikeTemperatureLabell.Text = _
FeelsLikeTemperatureLabell.Text & “°” & currentUnit
MinTemperatureForecastlLabell.Text = _
MinTemperatureForecastlLabell.Text & “°” & currentUnit
MaxTemperatureForecastLabell.Text = _
MaxTemperatureForecastLabell.Text & “°” & currentUnit

HumiditylLabell.Text = HumiditylLabell.Text & “%“
End Sub

Testing Weather Tracker

Now you will see whether your application works. Press F5 to run Weather Tracker. If you
have any build errors, review the errors on the Error List tab, and fix them. If necessary, you
can review the completed application in the Complete folder. When you run the application,
you should see your splash screen and then see a red NA in the notification area indicating
that the current temperature has not been retrieved. If the MSN Weather service is available,
you should see the current temperature for the Redmond, Washington, area in the notifica-
tion area. (Be patient. Depending on the current Web service load, you might have to wait a
few moments.) If you have to wait, you'll see that a little animated image displays while the
data is coming back from the MSN server. You just have to enable it! When you double-click
the temperature in the notification area, you should see detailed weather information, as
shown in Figure 9-10. Right-click the temperature to see the context menu. When you have
finished, exit the application.

Wieather Tracker 1.0.0.0

23

Current Conditions For Redmond, WA
S 33°F

Mostly Cloucdy Humidity: 82%

Feels Like: 30°F

Forecast Today

Low 34°F

High 40°F

Last Update: 12/9/2007 9:53 AM ekl

Refresh Weather Info

Options..,

Open..
Exit

Figure 9-10
The Weather Tracker application displaying weather data from a Web service

Chapter 9: Building Your Own Weather Tracker Application

225

Working with the Options Dialog Box

Currently, the location is set to a particular value, and that really isn't our intent. There-
fore, you will use the Options dialog box and let users search for the city they want to moni-
tor. Once the location code is selected, it will be persisted to disk, and whenever users restart
the application, it will be restored to the last location they specified. Remembering users’
settings from one execution to another will provide them with a better experience.

You will use the error provider control to display appropriate text if no city is found.

The error provider control displays error information. For example, if the user enters
invalid information in a text box, an error icon is displayed next to the control indicating
that an error has occurred. By default, the error icon is a small red circle with an exclamation
point. When the user clicks the error icon, an error description is displayed to explain what
is wrong to the user. You can change how the error is presented. For example, you can use
a different error icon, or you can make the error icon blink. Once a user addresses the error,
you set the error description to an empty string to make the error icon disappear.

TO VALIDATE USER INPUT

Open the Options form in Design view.

In the Toolbox, drag an ErrorProvider control from the Components group to the form.
The control appears in the component tray.

Name the control ErrorProviderCurrentLocation.
Double-click the OK button.
Add the following code to the btnOk_Click event handler:

UpdateCurrentInfo()
Me.DialogResult = Windows.Forms.DialogResult.0K
Me.Close()

You'll add some code to support when the user presses Enter while in the current city
text box. You can see that you have to launch the search if there's something in the text

box. To capture the individual keys, you implement the KeyDown event handler. It fires
as soon as the user presses a key. When the Enter key is pressed, you'll make a call to
another MSN Web service to get the list of cities that have keywords in their metadata
that matches your query. It’s also here that you'll set the error provider to alert a user
that the search didn't make any progress.

Private Sub txtCurrentCity_KeyDown(ByVal sender As System.Object
ByVal e As System.Windows.Forms.KeyEventArgs) Handles _
txtCurrentCity.KeyDown
If (e.KeyCode = Keys.Enter) Then

Me.Cursor = Cursors.WaitCursor
UpdateListBox()
If (1bPossibleCities.Items.Count = 0) Then
ErrorProviderCurrentLocation.SetError(txtCurrentCity, _
“No results for: “ & txtCurrentCity.Text)

Else
ErrorProviderCurrentLocation.SetError(txtCurrentCity, “”)
End If
End If
Me.Cursor = Cursors.Default
End Sub

The UpdatelListBox method says it all; this method will contact the MSN Weather service
for the currently entered city, country, or other information and bind this list of KeyValue-
Pair classes to the list box /tems collection. The reason the KeyValuePair class has been
used here is simple: you need locationCode to make the call to the MSN Web service, and
you need the other one to display on the form as the current monitored location.

Private Sub UpdateListBox()
Dim Locations As List(Of KeyValuePair(Of String, String))
Dim myMSNWeather As New MSNWeatherData()
Locations = myMSNWeather.GetLocations(txtCurrentCity.Text)
TbPossibleCities.DataSource = Locations
TbPossibleCities.DisplayMember = “Value”
TbPossibleCities.ValueMember = “Key”

End Sub

TO SAVE SETTINGS AND UPDATE WEATHER DATA
In Options.vb, add the following UpdateCurrentinfo method:

Private Sub UpdateCurrentInfo()
If ((txtCurrentCity.Text <> String.Empty) And _
(TbPossibleCities.Items.Count <> 0)) Then
If (Me.lbPossibleCities.SelectedValue.ToString() <>
My.Settings.CurrentLocationCode) Then
My.Settings.CurrentLocationCode = _
Me.lbPossibleCities.SelectedValue.ToString()
My.Settings.CurrentlLocation = _
Me.lbPossibleCities.SelectedItem.Value.ToString()
Main.currentlLocation = _
Me.lbPossibleCities.SelectedItem.Value.ToString()
Main.currentlLocationCode = _
Me.1bPossibleCities.SelectedValue.ToString()
End If
End If

If rbCelsius.Checked = True Then

My.Settings.CurrentUnit = “C”
Main.currentUnit = “C”

Else
My.Settings.CurrentUnit = “F”
Main.currentUnit = “F”

End If

My.Settings.Save()
Main.UpdateWeather ()
End Sub

The UpdateCurrrentinfo method saves the user's location code and location, as well as
the unit selected to display the temperature, and stores those values with the application
settings. It also calls the UpdateWeather method in the code for the Main form to update
the weather data for the new location code. The UpdateCurrentinfo method is called
when the user clicks OK in the Options dialog box.

Testing Weather Tracker Options

Now you will test the Options dialog box. Press F5 to run Weather Tracker. Once the o
splash screen disappears, right-click the icon in the notification area, and click Options. In Location R
the Options dialog box, test the location name. For example, try typing some garbage, RN I T T TR
and press Enter. In this case, you should get the error provider to the left of the text box,
as shown in Figure 9-11, letting you know that there were no results for the search query
you made!

When you have finished, type a valid location name, and click OK. Select the city from
the list that matches the one you'd like to monitor. It is quite fast, and you should see
weather data for the new location code.

You should be proud of yourself. You've developed an application with numerous
complex features, and it works! The Weather Tracker application accomplishes the basic
features established at the beginning of the chapter. There is plenty of room for enhance- 7he error provider control indicating an
ment. Now it’s time to learn how to distribute Weather Tracker or another application. error

And Now, Just ClickOnce

The ClickOnce technology has been available since .NET Framework 2.0. It's a fantastic
feature that lets you customize how your applications and tools get onto other people’s
machines. It's very easy—almost as easy as deploying Web applications, which often entails
merely copying files onto a server. With ClickOnce, you, the developer, can distribute your
application via a robust and reliable mechanism. You can deploy on Web servers, on file
servers, or onto CDs/DVDs. In addition, you can add the .NET Framework to your distribution
package along with SQL Server 2005 Express Edition if your application needs it. ClickOnce
handles rollback and uninstall well, and it's a charm for pushing new updates. In this case,
you'll deploy to a CD/DVD.

TO PACKAGE AND PUBLISH YOUR APPLICATION

To ensure that all the *tif files representing the weather icons are included with the
installation, make sure the Build Action property is set to Content for all the *tif images in
Solution Explorer. (This process was described earlier in the chapter.)

Rebuild the application by clicking Build Weather Tracker on the Build menu.

In Solution Explorer, right-click the Weather Tracker project, and select Properties to
open the Project Designer.

Click the Publish tab. You should see a screen that looks like the one shown in Figure 9-12.

Application

Publish Location -
Cornpile Fublishing Folder Location {web site, ftp server, or file path):
Debug publish,
Installation Folder URL {if different than abowve):
References
Resources
Install Mode and Settings

Settings |

() The application is available anline only Application =

Signing @ The application is available offline as well {launchable fram Start menu) Prerequisi

Iy Extensions | Undatel
pdate:
Security mﬁ
Publish
Fublish Yersion
tdajaor: dinar: Build: Revision:
1 0 0 1]
'_{ Automatically incrernent revision with each publish %
4 1 3

Publish tab in the Project Designer

Click the Application Files button to see the list of files that will be included in the instal-
lation. All the *tif files (as well as the .exe and other files) should be listed. Click OK.

You now want to select the prerequisites for your application. When the installer runs on
the user’s machine, it will check for the presence of these items. If they are not present,

the installer will by default download them from Microsoft.com or another source that
you have configured.

Click the Prerequisites button. In the Prerequisites dialog box, select the .NET Framework
3.5 and Windows Installer 3.1 check boxes. Make sure the Download Prerequisites from
the Component Vendor's Web Site option is selected. Click OK.

You can also set the Updates settings, which basically help you decide how your users will
update their application and how frequently you want your application to automatically
check for new updates. You won't do it here, but it's really trivial; take a look by clicking
the Updates... button.

Click the Publish Wizard button.

The first page of the wizard appears, as shown in Figure 9-13, asking you to specify a
location to publish the application.

-

Publish \Wizard

Where do you want to publish the application?

Specify the location to publish this application:

publish, Browwse..,

You may publish the application to a web site, FTP server, or file path,

Exarnples:
Disk path: cdeployhryapplication
File share: “serverwrnyapplication
FTP server: fipi/fftpamicrosoft.com/fmyapplication
Mieh siter hitpefAans microsoft.comfryapplication

i [est = I | Finish] [Cancel

Publish Wizard's first page

Every time you publish your
application, the published version
number (not the application ver-

sion number) will be increment-
edthat is, it will become version
1.0.0.0, 1.0.0.1, and so on.

During the installation, if you get
an error message that the appli-
cation validation did not succeed

or you receive another error mes-
sage, try republishing your appli-
cation and testing again.

8.

10.

11.

Click the Browse button. In the Open Web Site dialog box, select File System on the left,
and then select a location on your computer where you want to publish your application.
| suggest you create a new folder named WeatherTracker. You can use the Create New
Folder icon at the upper left to create a new folder. When finished, click the Open but-
ton, and then click Next.

On the next page, select how the user will install the application. It could be a Web site,
a UNC share on a network, or a CD or DVD. Select the From a CD-ROM or DVD-ROM
choice, and click Next.

The next page asks whether you want your application to look for updates every time it
starts. Because you are deploying on a CD or DVD, you won't have your application check
for updates. Select the default The Application Will Not Check for Updates choice, and
click Next to continue.

Click Finish to publish your application.

After a few moments, setup files will be created at the folder location you selected
earlier. To test the installation, double-click the Setup.exe file. During the installation, a
shortcut will be added to the Programs menu. (To uninstall the application, use Control
Panel.)

Once the installation works as expected, you can deploy your application by simply
burning the installation files onto a CD or DVD.

ClickOnce has more features, but this short demonstration will get you started creating

your own installations.

Congratulations on getting this far! You've learned a lot, and | hope you've had some

fun developing applications using Visual Basic 2008 Express Edition. If you like what you've
learned (and | certainly hope so), then your education is just beginning. There's so much
more to see and try. This book has provided a small sample of the types of applications you
can create. My advice to you is to continue thinking of fun projects you can create! You'll be
surprised at how much you can accomplish. In my opinion, developing an application is one
the greatest feelings of accomplishment. People are proud of their applications, and you will
be too!

If you happen to create an application that's useful to you, chances are it could be useful
for others as well. In the end, you might be helping people by providing them with the fruits
of your labor. You can also join development projects for fun and help others in the process
while learning a great deal. Visit Codeplex (http://www.codeplex.com/) for a sample of cool
project examples. Look also at Coding4Fun (http.//blogs.msdn.com/coding4fun/), where you'll
find plenty of interesting and new ways of using your new programming skills.

You can also visit my blog at http://blogs.msdn.com/ppelland/. | haven't updated my blog
for a while because I've been busy writing this book, but my newest endeavor at Microsoft
will enable me to blog about supercool technologies and talk about my new baby. It’s still
under wraps, but stay alert and come to my blog from time to time to see the news about
the new project. Until then, happy developing!

Chapter 9: Building Your Own Weather Tracker Application 233

" -

#H aper ¥

A

argument A variable that is passed to a subprogram

black box testing Functional testing of a computer
program to ensure it performs correctly

breakpoint A pause or stopping place in a program,
intentionally inserted to help with debugging

C

class The basic building block of object-oriented program-
ming; it defines the fields, properties, methods, and events
of an object

compiler A computer program that translates the instruc-
tions written in one computer language into output in
another computer language; compilers translate source code
into some type of machine language that can be executed
by a computer

console application An application that is run from a
command prompt with no Windows or Web interface

context-sensitive menu A menu that provides different
choices to the user depending on when it is accessed

controls Components of a graphical user interface, such as
text boxes or buttons

D
data member Data encapsulated within a class or an object

database A collection of data that is stored in files using a
systematic structure

I f backgroundlmacs
[Wp

data binding An easy and transparent way to create a link
between a control on a Windows form and a data source
from your application

debugger A computer program used to find the defects in
another program

DLL (Dynamic Link Library) A binary application library
file format in Microsoft Windows

encapsulation Hides private methods of a class or object;
ensures that an object cannot be changed

event A software message that indicates something has
happened in the program

execution engine Development tool for executing programs

F

FCL (Framework Class Libraries) A set of code libraries for
common programming tasks

hyperlink A reference in a hypertext document to another
document or location

icon A small image or picture used to represent a program,
file, or other object

IDE (Integrated Development Environment) Computer
software tools that help developers write computer programs

inheritance The ability to create specialized types from
existing objects that can share and extend the existing
object’s behavior without having to re-implement it.

Glossary

235

instance A manifestation of a class

Jscript An Active Scripting Engine; the Microsoft version of
JavaScript

Language Integrated Query (LINQ) Adds query capabili-
ties to .NET programming languages (such as Visual Basic),
enabling you to query data from a SQL Server database,
XML, in-memory arrays and collections, ADO.NET datasets,
or any other remote or local data source that supports LINQ

method Procedure or function; a piece of code associated
with a class or object

Microsoft .NET A software development platform devel-
oped by Microsoft

override A class or object can replace a behavior it has
inherited

Perl A programming language that supports both proce-
dural and object-oriented programming

programming language A method for providing instruc-
tions to a computer

property A quality of an object

Python An object-oriented computer programming
language

reference The address of the memory space used to store
information about a variable

splash screen An image that appears on the screen while

a program is loading; it provides information to the user
about the loading process and disappears once the program
is loaded

SQL Server 2005 Express Edition A version of SQL Server
2005 designed to help developers build applications by pro-
viding a powerful database that is also free and easy to use

string A sequence of characters or words

toolbar A row or section of clickable icons that activate dif-
ferent functions of a program

tooltip Short, context-sensitive information provided at the
point where the mouse pointer is held

user interface (Ul) The means by which users interact with
a computer program

variable A structure that holds information temporarily for
use later in a program

Visual Basic 2008 Express Edition A streamlined version of
Visual Basic that provides hobbyists, students, and novices with
an easy-to-use Windows programming and development tool

Windows application Computer software that provides
various functions for the user, such as word processing, data-
base queries, or spreadsheet calculations

Windows Presentation Foundation (WPF) Provides a
framework for building applications for Windows Vista and
blends together the application’s user interface, documents,
and media content

Symbols

' (apostrophe), commenting code,
38

. (period), for opening IntelliSense,
64

A

About dialog box
adding to Web browser
application, 93-94
attaching to Weather Tracker, 201
creating, 199-201
linking to Help menu, 94-96
abstraction, 211-12
Access databases, Microsoft, 163-64
actions. See methods
Add New Diagram, table
relationships, 155-59
Add New Item, splash screens, 86
Add New Table, database tables,
153
Add Reference, 127
Add Table dialog, 177
Add to List Below drop-down list,
menu items, 192-94
ADO.NET
data binding and, 165
Data Connection page, 166
Data Sources window, 165-66,
168
LINQ and, 164
overview of, 163-64
xsd (XML schema document)
and, 166-67
American Standard Code for
Information Interchange
(ASCIl), 26

e

ANSI/ISO standards, 149
antispyware software
installing Visual Basic 2008
Express and, 16
updating, 22
antivirus software
installing Visual Basic 2008
Express and, 16
updating, 22
apostrophe ('), commenting code,
38
application creation, 25-46
comparing application types,
26-27
console applications, 31-39
customizing IDE, 39-41
overview of, 25
starting Visual Basic 2008 Express
IDE, 28-31
Windows applications, 41-45
application deployment
ClickOnce, 229
packaging and publishing,
230-32
Application Files button, 230
applications
debugging, 126
references added to, 127-28
types created with Visual Basic
Express, 10
arguments. See also parameters
defined, 235
passing By Ref and By Val, 133
passing data to methods, 54
arrays
LINQ and, 164
loops and, 135
zero-basis of, 134

ASCII (American Standard Code for
Information Interchange), 26
As keyword, IntelliSense and, 62
Assembly Information, 89-90, 201
AutoHide, enabling/disabling, 60

background performance
supporting code for background
tasks, 218-19
of tasks, 215-18
in Weather Tracker, 211
BackgroundWorker control,
Windows Forms, 211, 215-18
Basic SQL, 149
binary data types, 160
binding navigators, 172. See also
data binding
binding sources, 172. See also data
binding
bitmap images, modifying splash
screen images, 92
black box testing
defined, 235
testing own code, 98
breakpoints
debugging tools/techniques,
128-29
defined, 235
bugs. See debugging tools/
techniques
build. See compile
Build Action property, 230
Build menu, 230
Button control, Windows Forms
adding to Web browser
application, 53

Click event connected to, 55-56
description of, 76
buttons. See also Button control,
Windows Forms
adding to Web browser
application, 106-07
linking to Web browser functions,
105
modifying navigation button
behavior, 107-08
renaming when adding, 106-07
By Ref, passing arguments, 133
By Val, passing arguments, 133

C

CarTracker
creating with Visual Basic 2008
Express, 151-53
data entry, 159-62
dataset for, 166-72
diagram, 150
table relationships, 155-59
tables, 153-55
Celsius to/from Fahrenheit
conversion tool, 224
CharArray, 135
CheckBox control, Windows Forms,
77
classes
ADO.NET, 163
all classes deriving from Object
class, 8
common classes and methods in
My namespace, 68-70
defined, 235
DLLs for grouping, 126
examples of use of, 5-9

Index

237

instances of, 54
MSN Weather data class, 211-15
namespaces and, 48-49
class libraries, types of applications
created with Visual Basic 2008
Express, 10
Click events
button control and, 55-56
Navigate menu and, 110
ClickOnce deployment, 229-32
key features of Visual Basic 2008
Express, 13
overview of, 229
publishing and packaging
applications with, 230-32
CLR (Common Language Runtime)
foundation role in .NET
framework, 3
as .NET execution engine, 2
unhandled exceptions and, 134
code
adding code for Create and
Destroy Icon, 219-22
for background tasks, 218-19
black box testing, 98
breaking long lines of, 81
closing application when
modifying, 55
commenting, 80-81
console applications, 37-39
exception handling, 137-38
learning to read, 39
reusing, 66
wiring source code to events,
79-82
code editors
accessing My namespace, 71
IntelliSense and, 62
code snippet editor, 82
code snippets, 66-68
creating, editing, debugging, 82
invoking, 67
key features of Visual Basic 2008
Express, 11

tasks performed by, 66
working with, 67-68
Code view
adding new method, 92
split window with Design view,
115
viewing breakpoints and source
code, 128
Codezone Community, 36
collections
Items Collection Editor, 192-94
LINQ and, 164
columns
composite keys, 146
database tables, 142
identity, 154, 160
viewing column properties, 155
ComboBox control, Windows Forms
data binding example, 173-75
description of, 77
combo boxes. See ComboBox
control, Windows Forms
command prompt. See console
applications
command window. See console
applications
comments, code, 38, 80-81
Common Controls
dragging controls from, 191
WebBrowser control, 52
Common Language Runtime. See
CLR (Common Language
Runtime)
community access, key features of
Visual Basic 2008 Express, 13
Community Technology Preview
(CTP), 17
compile
Build Action property, 230
console application, 38
Compile (F5), 55
compilers
defined, 235
error detection/handling in real-
time, 68-70

components, installed during
installation of Visual Basic 2008
Express, 21
component tray, databases, 172-73
composite keys, columns, 146
console applications
coding, 37-39
defined, 235
help options for, 34-37
overview of, 26-27
Solution Explorer and, 32-33
steps in building, 31-32
types of Visual Basic 2008 Express
applications, 10, 25
constraints
data integrity and, 159
foreign keys and, 147-48
context menus
defined, 235
notification capability associated
with, 191, 195-96
Options dialog box attached to,
204
ContextMenuStrip control, Windows
Forms, 192
continuing debugging, 130-32
controls
adding to tool strip, 108-09
adding to Web browser, 52
alignment coordinates, 60
connecting to functions they
perform, 54-56
defined, 235
key features of Visual Basic 2008
Express, 12
list of common, 75-78
naming, 73
populating with information,
102-04
procedure directives for, 93
rearranging order of, 100-101
selecting, 87
Text property, 54
variables, 57

conversion utility, Fahrenheit to/
from Celsius, 224

coordinates, control alignment, 60

Copy Always property, Properties
window, 170

copyright information, modifying,
90

Copy to Output Directory property,
Properties window, 169, 170

Create and Destroy Icon, Weather
Tracker, 219-22

Createlcon method, 219-21

Create Project, options for building
new applications, 31

CTP (Community Technology
Preview), 17

Ctrl+Alt+Break (Stop Debugging),
137-38

Ctrl+A (Select All), 223

Ctrl+Shift+F8 (Step Out), 133-35

Ctrl+Shift+S (Save All), 38, 156

Ctrl+spacebar, for opening
IntelliSense, 64

Ctrl+S (Save), 38

Database Diagrams node, 155-59
Database Explorer
adding tables to CarTracker
database, 153-55
Show Table Data, 159
verifying connection status of a
database, 152
database management system
(DBMS), 142
databases, 141-86
ADO.NET. see ADO.NET
CarTracker diagram, 150
component tray, 172-73
connection status, 152-53
creating with Visual Basic 2008
Express, 151-53
data binding, 163, 173-75
data entry, 159-62

data integrity, 143-45
dataset for CarTracker, 166-72
defined, 235
foreign keys, 147-48
interacting with relational
databases, 148-49
LINQ queries. see LINQ
(Language Integrated
Query)
normalization, 143
null values and, 145
overview of, 141-42
primary keys, 146-47
summary of, 186
table relationships, 155-59
tables, 153-55
table structures, modifying, 172
what is in, 142
data binding
ADO.NET and, 163
binding controls to data source
for Weather Tracker, 190
defined, 165, 235
with domain tables, 173-75
Smart Defaults, 174
Data Connection page, ADO.NET, 166
data-enabled applications, key
features of Visual Basic 2008
Express, 12
data entry, databases, 159-62
data integrity
foreign keys and, 161-62
overview of, 143-45
verification of, 161-62
data management, 141. See also
databases
data members, 235
data providers, ADO.NET and, 163
Dataset Designer, 175
DataSet objects, in ADO.NET, 163
datasets
for CarTracker application,
166-72
defined, 165
typed datasets, 172

data sharing, ADO.NET and, 163
Data Source Configuration Wizard,
166, 207
data sources
adding new, 207
ADO.NET, 163-64
for main form control in Weather
Tracker, 190-91
Data Sources window, ADO.NET,
165-66, 168
data types
LINQ and, 182-83
null values and, 144
DBMS (database management
system), 142
debuggers
debugging applications, 126
defined, 235
encountering breakpoints, 129
Debugger visualizers, key features
of Visual Basic 2008 Express, 13
debugging tools/techniques,
125-39
breakpoints, locals, Edit and
Continue, and Visualizers,
128-29
code for exception handling,
137-38
continuing debugging, 130-32
debugging applications, 126
DLL for grouping classes, 126
Immediate window, 138
out-of-range problems, 135-37
overview of, 125
references added to applications,
127-28
starting debugging, 129-30
stepping out of code, 132-35
summary of, 139
Debug menu
Immediate window, 138
Start Debugging, 39
Start Without Debugging, 40
Step Out command, 132-35

Stop Debugging command,
137-38
Watch tab, 130, 138
Debug mode, 129-30
declarative programming, 113
design layout, for Web browser
application, 49
Design view
creating splash screens and, 87
split window with Code view, 115
Destroylcon method, 221-22
development environment, key
features of Visual Basic 2008
Express, 13
dialog boxes, for user interaction,
93. See also by individual type
Dim keyword, IntelliSense and, 62
DirectX, WPF and, 112
Display method, Person class, 6
DivisionByZero exception, 136
DLLs (Dynamic Link Libraries)
defined, 235
for grouping classes, 126
Dock property, 175
documentation
key features of Visual Basic 2008
Express, 11
SQL and T-SQL, 162
DocumentCompleted event, 104
domain tables, data binding with,
173-75
Do Not Copy property, Properties
window, 170
DOS window. See console
applications
drop-down lists, 192-94
Dynamic Link Libraries (DLLs)
defined, 235
for grouping classes, 126

Edit and Continue feature
key features of Visual Basic 2008
Express, 13

overview of, 131-32
stopping/restarting debugging
and, 135
e-mail, code snippets for, 66
encapsulation, 54, 235
End Using block, 133
error handling
data integrity and, 161-62
in real-time, 68-70
testing Weather Tracker, 225
ErrorProvider control, Windows
Forms, 226
ESC key, for removing IntelliSense
contextual window, 65
event-driven applications, 78-82
linking About dialog to Help
menu, 94-96
overview of, 78-79
wiring source code to events,
79-82
events
Click events, 110
defined, 235
DocumentCompleted event, 104
FormClosing events, 198-99
KeyUp event, 110
linking About dialog to Help
menu, 94-96
Load events, 102-04, 222
overview of, 78-79
wiring Navigate dialog to
Navigate menu, 97-99
wiring source code to, 79-82
Exception Assistant, 134
exception handling
code for, 137-38
DivisionByZero exception, 136
IndexOutOfRangeException, 134
unhandled exceptions, 133-34
execution engines, 235
experimentation, importance of, 57
Extensible Application Markup
Language (XAML)
WPF and, 113
XAML Editor as key features of
Visual Basic 2008 Express, 12

F

F1 (Help)
for accessing help, 34
keyword searches, 45
F5 (Compile), 55
F5 (Start Debugging), 39, 129-30
F8 (Step Into), 130-31
Fahrenheit to/from Celsius
conversion tool, 224
FCLs (Framework Class Libraries)
defined, 235
in .NET framework, 2
fields, shared, 218
File menu, New Project, 31, 42
filtering, IntelliSense, 63
filtering queries, LINQ, 183-84
foreign keys
data integrity and, 161-62
overview of, 147-48
table relationships and, 156-57
For loops, arrays, 134
formatting strings, 93
FormClosing events, 198-99
form designer, 49
form icons, 111
forms. See Windows Forms
applications
framework. See .NET framework
Framework Class Libraries (FCLs)
defined, 235
in .NET framework, 2
functions, methods as, 54

G

Getting Started pane, Start Page, 29
GPU (graphical processing unit), 112
graphical processing unit (GPU), 112
graphical user interface (GUI)
console applications not
requiring, 26
Windows applications and WPF
applications and, 27
GridStyle property, menu strips, 101

GUI (graphical user interface)
console applications not
requiring, 26
Windows applications and WPF
applications and, 27

H

handles, for resizing controls, 52
"Hello World", as console
application, 26
Help (F1)
for accessing help, 34
keyword searches, 45
Help menu
accessing/using, 34
linking About dialog to, 94-96
help options, 34-37
HTTP, REST Web services and, 205
hyperlinks, 235

icons
Create and Destroy Icon, 219-22
defined, 235
form icons, 111
modifying, 89
personalizing applications with,
104-06
weather icons added to Weather
Tracker, 223-24
IDE (integrated development
environment)
defined, 235
main components, 30-31
Start Page, 29-30
identity, 146
identity columns, 154, 160
identity increment, 146
identity seed, 146
IDEs (integrated development
environments)
customizing Visual Basic 2008
Express IDE, 39-41

overview of, 25
starting Visual Basic 2008 Express
IDE, 28-31
If statements, arrays, 134
1IS (Internet Information Services),
204
Immediate window, debugging and,
138
Imports statement, 128, 218
IndexOutOfRangeException, 134
inheritance
defined, 235
in OOP examples, 7
Installation Options page, installing
Visual Basic 2008 Express and,
19
installing Visual Basic 2008 Express,
15-23
components installed with, 21
overview of, 15
preparation, 16
prerelease versions and, 17
side-by-side installation, 16
steps in, 18-20
summary of, 23
updates and, 22
instances
creating class instances, 54
defined, 236
integrated development
environment. See IDE
(integrated development
environment)

IntelliSense
code snippets, 66-68
filtering, 63
key features of Visual Basic 2008
Express, 11
LINQ queries and, 164
opening, 64

overview of, 62

selecting from list of options,
65-66

steps in use of, 64-65

as you type, 62-63

Internet Information Services (I1S),
204
Items Collection Editor, 192-94

J
Jscript, 236

K

keyboard, scrolling with, 65
KeyDown events, 227

KeyUp events, 110
KeyValuePair class, 227
keyword searches, queries, 45
keywords, IntelliSense and, 62

L

Label control, Windows Forms
description of, 76
snap lines for aligning labels, 61
labels. See Label control, Windows
Forms
Language Integrated Query. See LINQ
(Language Integrated Query)
Idf files, 150
libraries
DLLs for grouping classes, 126
FCLs (Framework Class Libraries)
in, 2
licensing, 18
LINQ (Language Integrated Query)
data types and, 182-83
defined, 236
function of, 3
overview of, 164
using LINQ queries, 183-85
ListBox control, Windows Forms, 77
Load events, controls and forms,
102-04, 222
Locals command, Debug menu, 130
locals, debugging tools/techniques,
128-29

main form, Weather Tracker
adding weather information to,
207-10
data source for, 190-91
finishing, 222-23
illustration of, 190
managed applications, in .NET
framework, 2
MaxLength property, TextBox
control, 174
.mdf files, SQL Servers, 150
menu bar, main IDE components, 30
menu items
adding to Weather Tracker,
192-94
steps in adding to WPF version of
Web browser, 117-22
menu strips, style options,
101
methods
defined, 236
in My namespace, 68-70
in OOP examples, 6-7
as subroutines or functions, 54
writing, 80
Microsoft Access, 163-64
Microsoft .NET, 236
Microsoft T-SQL (Transact-SQL). See
T-SQL (Transact-SQL)
Microsoft Updates
installing new applications and, 22
installing Visual Basic 2008
Express and, 16
Microsoft Virtual PC 2007, 17
Microsoft Visual Web Developer
2008 Express Edition, 10
Microsoft Windows operating
systems. See Windows
operating systems
modal forms, 96
Most Valuable Professionals (MVPs),
37
MSDN feeds, 30

MSDN Library
installing Visual Basic 2008
Express and, 16, 19, 21
local help from, 36
videos from, 45
MSDN Online
help options, 36
OOP video, 56
query searches of forums, 37
MSN Weather Web service
MSN Weather data class, 211-15
weather information added to,
207-10
Weather Tracker connecting to,
206-07
Multiline property, TextBox control,
174
multithreaded programming with
callbacks, 211
MVPs (Most Valuable Professionals),
37
My namespace, 70-72
adding classes/methods to, 71
common tasks with, 72
high-level classes in, 71
key features of Visual Basic 2008
Express, 11-12
modifying Web browser
application and, 91-92
overview of, 70-71

names
controls, 73
project and application, 48-49
variables, 57
namespaces, for organizing classes,
48-49
naming collisions, 48-49
Navigate dialog box
adding to Web browser
application, 96-97
wiring to Navigate menu, 97-99

Navigate menu
Click events, 110
wiring Navigate dialog to, 97-99
NavigateToUrl method, 110
navigation controls
behavior options for navigation
buttons, 107-08
for navigating tables, 161
.NET framework
ADO.NET including .NET data
providers, 163
defined, 2
installing Visual Basic 2008
Express and, 21
SQL support, 149
what it is, 2-4
New Project
File menu, 42
options for building new
applications, 31
normalization, of data, 143
notification area
added to Weather Tracker, 191-94
associated with context menu

strip, 195-96
Notifylcon control, Windows Forms,
191-94

null values, databases and, 145
NumericUpDown control, Windows
Forms, 78

o

Object class, 8
object-oriented programming.
See OOP (object-oriented
programming)
Online Help Settings dialog, 34-35
OOPLs (OOP Languages), 5
OOP (object-oriented
programming), 4-9
abstraction, 211-12
elements (classes, constructors,
objects, and methods), 5

examples of use of classes, 5-9
MSDN Online video, 56
programming paradigms and, 4-5
tutorial on, 74
opening applications, 86, 199
opening IntelliSense, 64
Options dialog box, Weather Tracker
attaching form to context menu,
204
creating form for, 202-03
testing, 229
working with, 226-28
orphaned rows, 143
out-of-range problems, 135-37
override, 236
Overrideable keyword, 6-7

P

packaging applications, 230-32
parameters. See also arguments
parameters, passing data to
methods, 54
Perl, 236
pinning Toolbox, 60
pre-installation preparation, Visual
Basic 2008 Express, 16
prerelease versions, Visual Basic
2008 Express, 17
Prerequisites dialog box, publishing
applications and, 231
primary keys
creating relationships between
database tables, 157
foreign keys relationship to, 147
overview of, 146-47
procedure directives, 93
professional look and feel, 99
programming languages
console applications and, 26
defined, 236
programming paradigms and, 4-5
progress bars, adding to Web
browser application, 101-02

Project Designer
adding references, 127
attaching forms to an application,
201
modifying applications, 88-90
user settings, 210-11
projects, Visual Studio
Create Project command, 31
creating, 50, 190
New Project command, 31, 42
overview of, 48-49
Recent Project pane, on Start
Page, 29
properties
defined, 236
list in Properties window, 51
modifying, 52
setting/retrieving content of data
members with, 54
sort order, 51
ToolStrip controls, 109
tree view option, 51
viewing, 155
Properties window
coordinates for control
alignment, 60
Copy to Output Directory, Copy
Always, and Do Not Copy
properties, 170
illustration of, 50
modifying properties, 52
renaming in, 73
sort order, 51
publishing applications, 230-32
Publish Wizard, 231
Python, 236

Q

queries, keyword searches, 45
queries, LINQ
adding to database applications,
176-82
overview of, 164
queries, SQL. See SQL (Structured
Query Language)

Query Builder
Query Parameters dialog, 179
search criteria, 180-81
SQL code pane of, 178
visual view of queries with, 177
query expressions, LINQ, 183
Query Parameters dialog, Query
Builder, 179
questions, help options, 37

RadioButton control, Windows
Forms, 76
RAD (rapid application
development)? 12-83
common controls, 75-78
error detection/handling in real-
time, 68-70
event-driven applications and,
78-82
IntelliSense. see IntelliSense
My namespace, 70-72
overview of, 59
rename feature, 72-75
snap lines, 60-61
summary of, 83
Visual Basic 2008 Express Edition
as RAD tool, 10
range, fixing out-of-range problems,
135-37
rapid application development.
See RAD (rapid application
development)
RDBMS (relational database
management system). See also
SQL Server 2005 Express Edition
defined, 142
installing Visual Basic 2008
Express and, 19
null values and, 145
SQL extensions, 149
Really Simple Syndication (RSS)
key features of Visual Basic 2008
Express, 13
MSDN feeds, 30

real-time error detection/handling,
68-70
Recent Project pane, Start Page, 29
references
added to applications, 127-28
defined, 236
relational database management
system. See RDBMS (relational
database management system)
relational databases. See also
databases
interacting with, 148-49
normalization, 143
overview of, 142
querying, 149
relationships, between database
table, 155-59
rename feature, 72-75
REST Web services, 205
reusable components, types of
applications created with
Visual Basic 2008 Express, 10
Rich Site Summary. See RSS (Really
Simple Syndication)
rows
database tables, 142
primary keys and, 146
RSS (Really Simple Syndication)
key features of Visual Basic 2008
Express, 13
MSDN feeds, 30
runtime environment, managed vs.
unmanaged applications, 2

S

Save All (Ctrl+Shift+S), 38, 156

Save (Ctrl+S), 38

SaveFileDialog control, Windows
Forms, 79-80

saving application settings, Weather
Tracker, 228

Scan method, 175

SDK (software development kit),
Visual Studio, 150

search criteria, Query Builder, 180-81

Select All (Ctrl+A), 223
Select Item commands, 192-94
SELECT query, 176-77
separators, adding to Weather
Tracker, 193
SEQUEL (Structured English Query
Language), 148-49
Shift-click, for selecting all files, 223
Show All Files command, Solution
Explorer, 73
Show Table Data, Database Explorer,
159
Shutdown method, for stopping
applications, 196-99
side-by-side installation, 16
Silverlight, installing Visual Basic
2008 Express and, 20. See also
WPF (Windows Presentation
Foundation)
SizeHeight property, TextBox
controls, 174
SizeWidth property, TextBox
controls, 174
Smart Captions, 169
Smart Defaults, 174
smart tags
for accessing Items Collection
Editor, 192
compiler and, 68-69
key features of Visual Basic 2008
Express, 12
undocking controls from parent
container, 52
snap lines, for control alignment,
60-61
SOAP Web services, 205
software development kit (SDK),
Visual Studio, 150
Solution Explorer
adding images to icons, 223-24
as main IDE component, 30
overview of, 32-33
renaming in, 73-74
Show All Files command, 73, 127
sort order, properties, 51

source code. See also code
closing application when
modifying, 55
learning to read, 39
wiring to events, 79-82
splash screens
attaching to applications, 201
creating, 86-88, 199-201
defined, 236
display time, 92-93
opening applications and, 86
sizing, 92
SQL Server 2005 Express Edition
as ADO.NET data source, 163-64
application diagrams, 150
creating CarTracker application,
151-53
creating relationships between
tables, 155-59
creating tables, 153-55
data entry, 159-62
defined, 236
installing Visual Basic 2008
Express and, 21
overview of, 19
SQL (Structured Query Language)
documentation, 162
querying relational databases,
148
stored procedures, 176-77
Start Debugging (F5), 39, 129-30
Starter Kits, built-in to Visual Basic
2008 Express, 11
Start Page, Visual Basic 2008
Express, 29-31
Start Without Debugging
command, 40
status bars
adding to applications, 101-02
main IDE components, 30-31
StatusStrip control, Windows Forms,
101-02
Step Into command (F8), 130-31
Step Out command (Ctrl+Shift+F8),
133-35

sticky tabs, in IntelliSense Filtering,
63

Stop Debugging command
(Ctrl+Alt+Break), 137-38

stopping applications, 196-99

stored procedures, SQL statements,

176-77
strings
defined, 236

formatting, 93
strongly typed datasets, LINQ and,
182-83
Structured English Query Language
(SEQUEL), 148-49
Structured Query Language.
See SQL (Structured Query
Language)
Sub method, 6
subroutines, 54
surrogate keys, 146
symbols, renaming, 72, 75
syntax
code snippets for, 66
IntelliSense for help in proper
coding, 62

T

tab key, for moving through
IntelliSense options, 65
TableAdapterManager class, 173
TableAdapter Query Configuration
Wizard, 176-77, 180
table adapters, 173
Table Designer, 153-55
TableLayoutPanel control, Windows
Forms, 87
tables
creating, 153-55
entering data, 159-62
foreign keys, 147-48
modifying table structure, 172
navigation controls for, 161
primary keys, 146-47
in relational databases, 142

relationships between, 155-59
tasks, background performance of,
215-18
templates
splash screens, 86
Windows Forms applications, 42
Test Connection button, verifying
connection status of a
database, 153
testing applications, 225, 229
TextBox control, Windows Forms
adding, 53
description of, 76
Multiline, MaxLength, SizeHeight,
SizeWidth properties, 174
Text property, 54, 192
tif files
for images, 223-24
packaging and publishing
applications and, 230
titles, changing application title, 89
toolbars
defined, 236
main IDE components, 30
Toolbox
main IDE components, 30
pinning, 60
ToolStripContainer control, Windows
Forms, 99-100
adding to applications, 100
overview of, 99-100
rearranging order of controls, 101
ToolStrip control, Windows Forms
adding new controls to, 108-09
adding to applications, 106-07
tool strips. See ToolStrip control,
Windows Forms
ToolTip control, Windows Forms
description of, 78
tooltips defined, 236
tooltips. See ToolTip control,
Windows Forms
Track Changes feature, 64
Try-Catch blocks, code snippets
for, 66

tsNavigation tool strip, 108-09
T-SQL (Transact-SQL)
documentation, 162
SQL extensions, 149
stored procedures and, 176
tutorials, Visual Basic 2008 Express,
11
typed datasets, 172

)

Ul (user interface)
application creation and, 26
applications, 189-90
defined, 236
splash screens and, 86
unhandled exceptions, 133-34
unit labels, in Weather Tracker, 224
UpdateCurrentinfo method, 228
updates (program), installing Visual
Basic 2008 Express and, 22
updating application data, Weather
Tracker, 228
URLs, adding navigation capacity to
applications, 110
user input validation, 226-27
user interaction, dialog boxes for, 93
user interface. See Ul (user interface)
user preference settings, 210-11
Using block, 133

\'}

validation, of user input, 226-27
variables

defined, 236

IntelliSense and, 62

naming conventions, 57
version information, in Assembly

Information dialog, 89

Visual Basic 2008

example of Person class, 5-6

as OOP, 4-9

overview of, 4

Visual Basic 2008 Express Edition
defined, 236
key features, 11-13
overview of, 9-10
types of applications created
with, 10
Visual Basic Express Headlines pane,
Start Page, 29
Visualizers, 128-29
Visual Studio 2008, 9-10

W

Watch tab, Debug menu, 130, 138
weather icons, adding to Weather
Tracker, 223-24
Weather Tracker, 187-233
background functioning, 211
ClickOnce deployment, 229
Create and Destroy Icon, adding
code to, 219-22
features and functions of, 188-89
main form, data source for,
190-91
main form, finishing, 222-23
MSN Weather data class added
to, 211-15
MSN Weather Web service,
connecting to, 206-07
notification area capability added
to, 191-94
notification capability associated
with context menu strip,
195-96
Options dialog box attached to
context menu, 204
Options dialog box created,
202-03
Options dialog box, working with,
226
overview of, 187
packaging and publishing, 230-32
saving settings/updating weather
data, 228

splash screen and About dialog,
199-201
stopping, 196-99
summary of, 230-32
tasks performed in background,
215-19
testing, 225
testing options in, 229
unit labels and conversion utility
added to, 224
user interface, 189-90
user preference settings, 210-11
validation of user input, 226-27
weather icons added to, 223-24
weather information added to,
207-10
Web service application for,
204-05
Web applications, Visual Basic
2008 Express Edition not
development tool for, 10
Web browser, building, 47-58
Click action connected to button
control, 55-56
connecting controls to functions
they perform, 54
defining what a project is, 48-49
design layout, 49
experimenting with, 57
overview of, 47
steps in creating simple browser,
50-53
summary of, 58
WebBrowser control, Windows
Forms, 52
Web browser, modifying
About dialog box, 93-96
buttons added to, 106-07
controls, adding to tool strip,
108-09
controls, populating with
information, 102-04
controls, rearranging order of,
100-101

copyright information, 90

dialog boxes for user interaction,
93

form icon, 111

menu items added to WPF
version of, 117-22

menu strip style options, 101

My namespace and, 91-92

Navigate dialog box, 96-99

navigation button behavior,
107-08

opening application, 86

overview of, 85

personalizing with icons, 104-06

professional look and feel, 99

splash screen display time, 92-93

splash screen for, 86-88

status bars and progress bars,
101-02

steps in creating WPF version of,
114-17

summary of, 123

titles, 89

tool strip container control added

to, 99-100
tool strips added to, 106-07
URL navigation capacity, 110
Web pages, Navigate dialog for,
96-99
Web servers, 204
Web services
for adding weather information
to Weather Tracker, 207-10
connecting to, 206-07
overview of, 204-05
Welcome to Setup page, installing
Visual Basic 2008 Express and,
18
wildcard characters, in queries, 179
Windows applications, 41-45
defined, 236
event-driven nature of, 78-82
overview of, 27
steps in building, 42-45

types of applications created with
Visual Basic 2008 Express, 10
Windows Forms applications. See
also Windows applications
About dialog form, 199-201
adding controls to browser
application, 52
cartracker database. see
CarTracker
creating new project, 50, 190
notification form, 191-94
Option dialog box form, 202-03
overview of, 27
splash screens, 86, 199-201
steps in building, 42-45
WPF compared with, 113
Windows Forms controls. See
controls
Windows Forms Designer
building Windows Forms
applications, 42
key features of Visual Basic 2008
Express, 12
Windows operating systems
installing Visual Basic 2008
Express on Vista, 18
.NET framework building blocks
shipping with Vista, 3
WPF and, 112
Windows Presentation Foundation.
See WPF (Windows
Presentation Foundation)
Windows services, as type of
Windows application, 27
Windows Updates
installing new applications and,
22
installing Visual Basic 2008
Express and, 16
wiring controls, to functionality, 54,
79-82
WPF applications
creating Web browser, 114-17

menu items added to Web
browser, 117-22
overview of, 27
types of Visual Basic 2008 Express
applications, 25
WPF Designer
key features of Visual Basic 2008
Express, 12
Navigate window in, 120
WPF (Windows Presentation
Foundation)
defined, 236
function of, 3

overview of, 112
Silverlight and, 20
XAML and, 113

X

XAML (Extensible Application
Markup Language)
WPF and, 113
XAML Editor as key features of
Visual Basic 2008 Express, 12
x coordinates, control alignment
and, 60

XML Y
ADO.NET classes integrating with
XML classes, 163
application settings stored in
XML file, 210
SOAP Web services and, 205
XML schema definition file, 165
XMLTextReader, 212
XML Web services, 12
xsd (XML schema document),
166-67

y coordinates, control alignment
and, 60

	Cover
	Copyright Page

	Contents
	Introduction
	Who Is This Book For?
	How This Book Is Organized
	Conventions and Features in This Book
	Code Samples
	Installing the Code Samples
	Using the Code Samples
	Uninstalling the Code Samples
	Prerelease Software
	Technology Updates
	Support for This Book
	Questions and Comments
	About the Author
	Dedication
	Thanks

	Chapter 1: Introducing Microsoft Visual Basic 2008 Express Edition
	What Is .NET?
	What Is Visual Basic 2008?
	Is Visual Basic 2008 an Object-Oriented Programming Language?
	What Is Visual Basic 2008 Express Edition?
	What Kinds of Applications Can You Build with Visual Basic 2008 Express Edition?
	What Are the Key Features You Need to Know About?

	Chapter 2: Installing Visual Basic 2008 Express Edition
	Preparing to Install Visual Basic 2008 Express Edition
	Side-by-Side Installation
	Prerelease Versions of Visual Basic 2008 Express Edition

	Installing Visual Basic 2008 Express Edition

	Chapter 3: Creating Your First Applications
	Three Types of Applications: What Are the Differences?
	Getting Started with the IDE
	Building the Projects
	Building a Console Application
	Getting to Know Solution Explorer
	Getting Help: Microsoft Visual Studio 2008 Express Edition Documentation
	Coding Your Console Application
	Customizing the IDE
	Creating a Windows Application

	Chapter 4: Creating Your Own Web Browser in Less Than Five Minutes
	What Is a Project?
	What Is the Design Layout?
	To Create a Simple Web Browser

	Putting It All Together

	Chapter 5: Using Rapid Application Development Tools with Visual Basic 2008
	Snapping and Aligning Controls Using Snap Lines
	Using IntelliSense—Your New Best Friend!
	Using IntelliSense as You Go
	Using IntelliSense Filtering: Removing the “Uncommon”
	Opening IntelliSense: Pressing Ctrl+Spacebar
	Opening IntelliSense: Typing a Period or Left Parenthesis
	Using IntelliSense Code Snippets: The Time-Saver
	Invoking IntelliSense Code Snippets

	Exploring Real-Time Error Detection and Correction
	Oh, My...My Is Great
	Renaming
	Why Should You Rename?
	How to Use the Rename Feature

	Exploring Common Windows Controls
	What Happens When an Event Is Triggered?

	Chapter 6: Modifying Your Web Browser
	Opening Your Application
	Interacting Through Dialog Boxes
	Adding an About Dialog Box
	Adding a Navigate Dialog Box

	Having a Professional Look and Feel at Your Fingertips
	Adding a Tool Strip Container and Some Tools
	Adding a Status Bar to Your Browser
	Personalizing Your Application with Windows Icons

	Redoing the Browser
	Windows Presentation Foundation
	WPF and XAML

	Chapter 7: Fixing the Broken Blocks
	Debugging an Application
	Using a DLL in an Application
	Using Breakpoints, Locals, Edit and Continue, and Visualizers

	Chapter 8: Managing the Data
	What Is a Database?
	What’s in a Database?
	What Are Data Normalization and Data Integrity?
	What Is Null?
	What Are Primary Keys and Foreign Keys?
	How Do You Interact with a Relational Database?

	Using SQL Server 2005 Express Edition in Visual Basic 2008 Express Edition
	Creating a Database Using Visual Basic 2008 Express Edition
	Creating Tables in Your Database
	Creating Relationships Between the Tables
	Entering Data in SQL Server Tables Using Visual Studio

	What Are ADO.NET, Data Binding, and LINQ?
	Developing the CarTracker Application
	Using the Component Tray
	How Do I Get More Meaningful Information on My Form?
	Using LINQ

	Chapter 9: Building Your Own Weather Tracker Application
	Exploring the Features of the Weather Tracker Application
	Creating the Application User Interface
	Adding Notification Area Capabilities
	Adding the Splash Screen and About Dialog Box
	Adding the Options Dialog Box

	Using the MSN Weather Web Service
	Connecting to MSN Weather Web Services
	Setting User and Application Preferences
	Working in the Background
	Completing the Core Weather Tracker Functionality
	Testing Weather Tracker
	Working with the Options Dialog Box
	Testing Weather Tracker Options

	And Now, Just ClickOnce

	Glossary
	Index

